
Automatic Filtering of Abuse Reports
Niklas Udd

Department of Computer and Systems Sciences

Stockholm University / Royal Institute of Technology

June 2008

This thesis corresponds to 20 weeks of full-time work. Version: 1.0.0

Abstract

This master thesis investigates how abuse reports can be automatically filtered in

order to save time, lower costs and increase safety. Abuse reports are reports that

users on a website file when they encounter content they find inappropriate. These

reports are then generally handled by the Customer Service who decides if the

content should be removed from the website. The reports that potentially can be

automatically removed are the ones that do not result in deletion of content.

The study that is presented in this report took place at the community website

Stardoll. A decision tree was built to classify reports as either good or bad. The

over 200 attributes that were used to train the tree contained information about the

user who filed the report, the user who the report was filed against and the report

itself. Unfortunately no data could be extracted from the reported content.

On unseen data the decision tree correctly removed 22% of the reports that

should be removed while incorrectly removing 8% of the reports that should not.

These numbers are not good enough to make it feasible to start using the system

without further refinements. Such refinements are outlined in this report together

with suggestions for how other automated methods can be used at Stardoll and

similar communities.

This report contains examples of abuse
reports. The nicknames used in those examples
have been changed in order to protect the
privacy of the users. Any similarities between
nicknames used by users on Stardoll and the
nicknames used in this report are purely
coincidental.

iii

Acknowledgments

I would like to take this opportunity to thank the people who have helped me write

this report and done the work presented in it. First of all I thank my supervisors

Lars Askers (Stockholm University) and Mikael Krantz (Stardoll) for supporting

me and giving me good advices. I would also like to thank everybody at Stardoll,

especially Margareta Petersson and Johannes Schildt at the Customer Service, for

all the help and suggestions they have given me. Finally I thank my good friend

Elin Nilsson for providing valuable feedback on various topics throughout the

work.

v

Table of Contents

1. Introduction..1
1.1. Objective..2
1.2. Study Performed...2
1.3. Method...3
1.4. Limitations...3
1.5. Target Group..3
1.6. Outline of Report...4

2. Background..5
2.1. Automated Methods...5
2.2. Related Work...7
2.3. Case Studies...8
2.4. Machine Learning..10

2.4.1. Decision Trees..13
3. Stardoll...15

3.1. General Information...15
3.2. Abuse Reports at Stardoll..17

3.2.1. Handling of Abuse Reports..19
3.2.2. Overview of an Abuse Report..20
3.2.3. Example of Abuse Reports...20

3.3. Possible Uses of Automated Methods...23
3.3.1. Ordering Reports by Priority..24
3.3.2. Profiling Users..25
3.3.3. Finding Specific Behavior..26
3.3.4. Filtering out Reports...27

3.4. Potential Benefits and Moral Implications.......................................28
4. Preprocessing the Data...30

4.1. Theoretical Aspects..30
4.1.1. Preparation..30
4.1.2. Collecting Attributes..32
4.1.3. Recovery of Data..35

4.2. Preparation...37
4.3. Attributes in the Report..38
4.4. Attributes Suggested by the Customer Service................................40
4.5. Attributes Used..42
4.6. Recovery of Data..43
4.7. Lack of Data...45

5. Training the Classifier...47
5.1. Theoretical Aspects..47

5.1.1. Large Data Volumes...49
5.1.2. Ensemble Methods...50

5.2. Weka..51
5.3. Choosing Classification Algorithm..52
5.4. Choosing Parameters..55
5.5. Finding the Most Suitable Subset..58
5.6. Favoring Memory Instead of Time..61
5.7. Increasing Memory...65
5.8. Creating a Tree Based on Fewer Attributes.....................................65
5.9. Bagging and Boosting..67
5.10. Building a Custom Ensemble System..69

vii

5.11. Ensemble with Veto...73
5.12. Description of the Classifier..74

6. Using the Classifier..76
6.1. Theoretical Aspects..76
6.2. StarClassifier..78
6.3. Handling of Rejected Reports..79
6.4. Protected Reports...80

7. Evaluating the Classifier..82
7.1. Evaluation on New Data..82
7.2. External Factors Affecting the Result..85
7.3. Interviews...87

7.3.1. Customer Service...87
7.3.2. Management...88
7.3.3. Development..89

8. Result and Analysis...91
8.1. Conclusions..91
8.2. Contributions..92
8.3. Lessons Learned...93
8.4. Future Research..94

8.4.1. Improved Automatic Filtering..94
8.4.2. Other Automated Methods...95
8.4.3. Other Approaches...96

9. References..98
Appendix A: StarClassifier...101
Appendix B: Effects of Individual Attributes...109

viii

1. Introduction

We live in an information rich society where we all, corporations as well as

people, have to handle and process large amounts of information. One contributing

factor is the Internet which has made it possible for everyone to create and share

data in a way that has not been easily done before. This is in itself something

positive; proper information makes it possible to invest in the right stocks at the

right time, reviews written by owners of a specific product makes it possible to

buy a product that fulfills our needs, and having social networking sites informing

us about where our friends are traveling makes it easier to schedule a meeting.

The problem is that the amount of information that is presented to us is so vast

that it is difficult and time-consuming to process it all. A solution to this is to

employ an automated method. Such methods can take many shapes, but examples

include systems that filter out information, assign priorities to it, or handle all

information on its own and make a decision based on the information it has

processed.

Many of us are using automated methods in our everyday life. It is likely that a

spam filtering system is going through your emails [Gra02], that the search engine

you are using is sorting the results by relevance or priority [PNM+98], and that

your credit card company automatically monitors your card and puts a hold on it if

the usage pattern indicates fraudulent behavior [FP97].

The increase in amount of data created might be most visible on the Internet.

This should especially be true for websites letting users create a large part of the

content themselves, something that is often true for Web 2.0 sites. If everyone can

contribute to the content on the site it is likely that the amount of information will

increase as the number of sources increase. In addition to the increased amount of

content that is explicitly created, the amount of automatically gathered, or

generated, information is also likely to rise. A shop owner on the Internet is for

example able to track customers in a way that is harder to do in a physical store. It

is possible to collect information about where people come from, who referred

them and how much time they spend looking at items before they buy them.

1

1.1. Objective

The purpose of this thesis was to investigate the benefits, drawbacks and

feasibility of employing an automated method on a community website, and

examine potential efficiency improvements, in terms of time, resources and funds,

made by using such a method.

Community websites and social networking sites are getting more and more

attention and they are gaining in popularity. The popular social networking site

Facebook currently has more active users (67 million [Fac08a]) than many

countries, including United Kingdom, Canada and France, have citizens. Many

sites, even if they are not originally thought of as community websites, are today at

least partly similar in nature to traditional community sites. Video, link sharing

and gaming sites are just examples of sites that commonly have a community

function on top of some other primary function.

1.2. Study Performed

There are many data flows on a community website. Some of these are created by

the users directly, for example by writing posts in a forum, and others are

generated automatically by logging and similar systems. Most of these flows are

not regularly reviewed by the staff of the website and does not give much

opportunity for improving efficiency. One reviewed flow that is often present on

these sites is a flow of abuse reports. It is often possible to file reports against

other users when they behave inappropriately. These reports are generally

reviewed by the staff manually and the task can be very resource-intensive.

The study that was performed aimed at building a system that should improve

the process of handling abuse reports on a community site. Abuse reports are

written by users when they discover an abuse, which for example could be an

offending post. The reports are read by the Customer Service which will decide

what action to take.

Several automated methods were considered but the one that this study was

focused on dealt with filtering. A significant part of all reports that are filed on the

investigated site are in one or another way bad. These reports are, once their

quality has been determined, discarded. The system built aimed at automatically

finding and removing these bad reports. If successful the Customer Service's

workload would decrease most notably.

The system was based on machine learning, which is a method for letting

computers “learn” without being explicitly taught. The exact technique used was a

decision tree algorithm. These concepts are explained in Section 2.4 on page 10.

The study was performed at Stardoll, a community site with over seventeen

million users. More about Stardoll and their abuse reports can be read in Section 3

on page 15.

2

1.3. Method

The work was divided into three phases. The first phase consisted of doing initial

investigation about the subject and deciding the details about the study. The

second phase was the technical phase where the automated method was built. The

third and last phase analyzed the results.

During the first phase the details of the work were set. Different automated

methods for improving the handling of abuse reports were considered and

evaluated. Input was taken from previous work in the area, case studies and

discussions with Stardoll employees.

Once the details were decided upon the technical phase could be started.

During that phase the automated method was built with the help of machine

learning techniques. Existing algorithms were used to test and compare different

approaches. The whole technical phase was in itself divided into a few logical

steps. The first step performed was preprocessing the data which includes

gathering and transforming data, which was needed before any further work could

be done. The second step consisted of using the data in order to build a model that

would later be the heart of the automated method. This step was iterative; an initial

approach was tested after which other approaches and refinements were tested in

order to improve the initial result. The third and last step included creating the

tools needed in order to practically employ the automated method.

When an automated method had been built it was evaluated both quantitatively

and qualitatively. The former was done by using the standard method for

measuring an automated method's estimated performance. The latter was done by

interviewing people who in one or another way would be using the system.

After the evaluation of this particular automated method was done the result of

the study was analyzed on a more general level. How this particular result and

automated methods in general could fit into a bigger picture were discussed. The

objective set up above was also reviewed.

1.4. Limitations

The focus of this study has been on investigating how an automated method could

be employed and different aspects that need to be thought of when doing so. The

goal has not been to get an industrial-strength system up and running, but a

prototype has been created in order to show the feasibility. Some non-technical

aspects, such as moral implications, were also considered.

1.5. Target Group

The contents of this report can be interesting from several points of view. Potential

readers include researchers who are doing related work, employees of large

websites who are interested in learning if and how automated methods can

3

improve efficiency, and people how are generally interested in this increasingly

important field. These different readers are likely to have different background

knowledge; some might be experts in machine learning but novices when it comes

to websites and vice versa. Because of this much background information is

available in this report to make it rather self-contained. Some details might be

difficult to understand without any additional background information, but the

general picture should still be graspable.

1.6. Outline of Report

This report is divided into sections based on the different phases outlined in the

previous section describing the used method. The different sections will be shortly

described below. It is possible for readers well familiar with certain fields to skip

the subsequent sections.

The first section, Background, provides general information about automated

methods and what has previously been done in the field. An introduction to

machine learning in general and specifically the decision tree technique is also

provided.

The next section, Stardoll, describes the community Stardoll, how abuse

reports are handled today and possible automated methods that could be put in

place.

The following three sections all deal with building the automated method.

These sections start with a theoretical introduction to the task to be performed.

After this general introduction a description of what has been done and the results

from it are provided.

Before the data can be processed by a machine learning algorithm it has to be

preprocessed. How this was done is described in the section Preprocessing the

Data. Once the data was ready a machine learning algorithm was used to train a

classifier, which is described in Training the Classifier. Finally, in Using the

Classifier, the trained classifier was made practically useful.

The following section, Evaluating the Classifier, tries to evaluate the classifier

by measuring its performance and interviewing people about the result.

The last section, Result and Analysis, evaluates the result on a more general

level. Conclusions, contributions and some ideas for future research are listed.

In addition to the sections mentioned above the report has two appendixes. The

first, StarClassifier, contains elaborate instructions for using the tool StarClassifier

which has been developed as a part of this work. The second, Effects of Individual

Attributes, presents the most important groups of factors that affect the quality of

an abuse report.

4

2. Background

Some background information is needed in order to fully understand the study that

has been performed. This section aims to give the necessary information to those

not previously acquainted with automated methods. The first subsection explains

and discusses automated methods in general and stresses the importance of such

methods. The following two subsections provide the context of this work by

stating was has been done previously. The last subsection focuses on the technical

methods; machine learning in general and the specific decision tree technique will

be described.

2.1. Automated Methods

Automated methods are becoming increasingly important in our society as the

amount of information raises. It is in many domains difficult and time-consuming,

or even impossible, to manually manage all data. In those cases an automated

method can help by organizing and processing the information. One example of

this type of application is a search engine which aims at finding specific web

pages. In this situation it is easy to see that an automated method can help since the

number of web pages available is so vast that it is not feasible to manually go

through them all.

In other domains the amount of data available might be more than what is

initially apparent and in these situations the potential benefits of employing an

automated method might not be obvious. Finding interesting news articles is one

example belonging to this category. There is probably only a few people who see

the need to use an automated method in this domain, but the number of articles

published each day is so large that it is infeasible to skim trough them all in the

hunt for what is interesting. Most of us probably stick to one source and skim

through their articles. By using this method it is easy to miss good articles that

would have been appreciated, simply because they did not appear in the news

source we chose. One possible solution is to let an automated system go through

articles we like and try to find patterns based on characteristics of the article. Once

trained the system could go through huge amounts of articles and notify us about

articles that we are likely to appreciate, even if they were written in a paper we

have never heard about.

5

Automated methods can take on many shapes. It was shown above that they are

applicable in a wide variety of domains and it is also true that they can be used for

many different applications. Below is a list of four categories of automated

methods together with examples of systems that would belong in that category. It

should be noted that these categories are listed the way they are simply to show

that automated methods can be applied in different ways. This is not an attempt to

provide a formal classification scheme since the list is neither complete nor

disjoint. These issues will be discussed more in details after the list has been

presented.

Automatic filtering. Two classes of data, where one is typically interesting

and one is not, are often mixed together in the same data flow. An automated

filtering system can help separate these two classes by looking at different

properties of the available entities. One example where this is utilized is emails.

Legitimate email messages are mixed together with spam messages. The recipient

is only interesting in the first of these two classes and it is desirable to filter away

all spam messages.

Automatic priority assignment. Sometimes the different classes within a data

flow is not very important, but the priority might be. Different entities can have

different priorities and handling the most important entity first can be beneficial.

In the unfortunate event of a large accident it is likely that many people will almost

simultaneously call the emergency line (e.g., 112 or 911). In such situations it is

possible that the number of operators available can not answer to all calls

instantly. A system could then automatically assign priorities to calls and forward

the calls to operators according to priority. One factor that might be interesting to

look at is the geographical distribution of callers. It might be reasonable to assume

that the accident has taken place in the center of this distribution and that the caller

closest to this point is the one that has the most accurate and elaborate information.

Automatic detection. A flow of data can occasionally contain a pattern that is

desirable to find once it appears. One example of this is an Intrusion Detection

Systems (IDS) which monitors computer systems in order to find malicious

behavior. Automated detection can be used to find these patterns. It should be

noted that automatic detection is closely related to automatic filtering and the

difference appears sometimes only on a conceptual level, which will be further

discussed below.

Automatic handling. In some situations a system that could by itself make

decisions based on the data collected is preferable. One example of such a system

is the type of system mentioned earlier that goes through all credit card

transactions and immediately puts a hold on cards that shows fraudulent behavior.

Acting quickly makes it possible to protect money and make fraud less appealing.

There is no reason to get into fraud if the cards are blocked so that no money can

be earned.

6

It was mentioned earlier that the list is not a very good categorization of

automated methods, but it should clearly show the wide variety of applications for

automated methods. One problem with the categorization is that one category can

be seen as a special case of another. Automatic filtering can for example be seen as

automatic handling where the action in question is to remove or, depending on

perspective, save entities. Automatic handling can, in turn, be seen as automatic

detection followed by some actions taken once an item has been detected. The

action in itself might be completely separated from the rest of the automated

method and this addition should not change any of the underlying techniques. In

fact, all of the above automated methods can technically look very similar. In the

same way it is also possible that different systems within the same category look

very different technically.

2.2. Related Work

A good starting point when conducting a study such as this is to investigate what

work has previously been done in the field. Unfortunately it was hard to find any

published material about work related to the use of automatic methods on large

websites. The domain is quite narrow and the number of large websites with much

user generated material is not unlimited, even though many sites matching that

description exist. On the other hand automated methods are likely to be usable and

perhaps even necessary in this precise domain. It is likely that work has been done

in this field without information about it has been published. One possible

explanation for this is that the research might have taken place at the site in

question and been considered normal development rather than research. A case

study, which will be described in the following section, was performed in order to

investigate if any unpublished work had been performed.

If the focus is turned to employing automated methods in the field of customer

service reports some related work has been done. Lenz, Hübner and Kunze

[LHK98] discuss how a Customer Service can be helped by having the right

documents presented to them automatically. The idea is that the system should be

fed with a description of the problem at hand and then analyze the problem and

determine which documents the Customer Service Representative should get in

return. The documents can be troubleshooting guides, instructions about how to fix

a certain problem or other documents that the system finds relevant. Brüninghaus

and Ashley [BA97] takes on a somewhat more general approach. Their idea is to

extract important features from the description which later can be fed into another

system than can reason with the case in some way. Both these approaches have

focused on the textual description in itself, meaning all relevant information about

the case has been believed to be in the textual description. This is not a preferable

approach in the case at hand since it only focuses on one small part of all the data

available. In many situations, and especially on websites, the amount of

7

information that is, or could be, available is much larger than the information that

is explicitly made available. In the case of a Customer Service for a website factors

such as the user's environment (e.g., browser and operating system) and the user's

usage pattern (e.g., how often the user has visited the website) can be important

when troubleshooting a problem the user is experiencing on the website.

Much work has been and is still being done in the field of automated methods

in general. These studies are performed in many different domains, some very far

from the one seen here. Despite this the underlying techniques and considerations

are sometimes very similar. It appears that the method itself and factors such as

amount and properties of available data are more important than the domain. In a

study perform by Burl et al. [BAS+98] images showing the surface of Venus were

automatically analyzed in order to find volcanoes. At a first glance this study

seems totally different from the study that is presented in this report, but the fact is

that these two have many similarities. These are complicated to explain without

referring to details of the work that has not yet been described. The similarities

will be brought up again later in the report where they can be more easily

explained.

2.3. Case Studies

Since the search for finding published material about similar work turned up empty

the focus was turned to other communities. Other large communities, and

especially the largest, are likely to have encountered problems with the large

amount of data in the same way Stardoll has. An inquiry was sent to some of them

asking if they had considered automated methods and if they, in that case, had

implemented a system utilizing one.

A list of communities was found on Wikipedia [Wik07] and the ten largest ones

were contacted. It is not safe to say that this list is perfectly correct, but the exact

member count is not important. The point was that big communities should be

contacted and the list should be accurate enough for that purpose. It is,

furthermore, a difficult task to make a perfect list since some communities do not

release exact numbers. One aspect that makes Stardoll different from many other

communities is the age of the users. It is possible that other communities which

also have a large amount of abuse reports to handle have solutions that will not

work for Stardoll, and vice versa. The characteristics of abuse reports at Stardoll

appear to be heavily influenced by the young user group (see Section 3 on page

15). One example of this is when two friends on Stardoll know each other in real

life and fall out with each other there. Sometimes this is handled by filing false

reports against each other on Stardoll. This behavior is probably not as common on

sites with an older user group, such as LinkedIn. In order to get responses from

communities with a user group similar to Stardoll's a few communities which

8

focus on young people were added to the list. In total the list of communities to

contact consisted of 14 names.

Only three of the 14 contacted communities answered, namely Bebo,

Classmates.com and Facebook. Unfortunately none of them could provide any

information in the matter: Bebo referred to their privacy policy, Classmates.com to

the proprietary nature of the information and Facebook claimed to be unable to

answer any research questions.

Unfortunately not much information could be extracted from the answers

received, but some conclusions can be drawn anyway. The best example of this is

when the inquiry was sent to Faceparty and an automatic reply was received

shortly afterwards. The reply contained information stating that the question had

been understood and answered by a machine and that it afterwards had been

deleted, hence no further action would be taken on their part. This is a type of

automatic handling. Unfortunately the automatic reply system misunderstood the

questions completely and answered to something else.1 Another message was sent

asking more about the system but no reply has been received. Worth mentioning

about Faceparty is that paying members, users which have purchased the Cool

Tools package, are not filtered through this system. They are instead guaranteed a

personal answer within 48 hours. [Fac08b] Friendster also uses an automated, but

less offensive, system. After they have been contacted a confirmation letter is sent.

That letter contains links to information pages that are believed to be relevant, but

the original message is still kept.

Some information can also be extracted by reading the information available on

the communities. Xanga states that “we don't have the resources to fully

investigate every abuse report”2 [Xan08]. It can not be concluded if this means that

they are investigating every report, but not fully, or if they simply do not

investigate some of the reports. This quote might imply that they are filtering out

some reports. Bebo on the other hand states that “a member of staff will personally

review all reported violations” [Beb08]. This means that they can not filter out any

reports, but they could still be using other automated method, such as automatic

assignment of priority, to support the Customer Service.

In summary it can be concluded that automated methods are used by a few

communities and also that communities in general are unwilling to answer

questions about this. If the unwillingness is due to general issues, such as

communities looking at each other as potential competitors, or if automated

methods is extra sensitive can not be concluded. Automating parts of the Customer

Service might be a sensitive issue. It has moral implications and it might also be

1 To be fair it should be stated that the type of questions sent must be rather atypical.
2 It should be mentioned that this quote is taken out of context. It can be found on a page

dedicated to police officers. The full quote reads “While we don't have the resources to
fully investigate every abuse report, we are always happy to cooperate with police
investigations”.

9

the case that some measures can be countered if people know that they are in

place.

2.4. Machine Learning

Machine learning is a field in computer science, closely related to the perhaps

more well-known field of data mining, that focuses on developing ways for

computers to “learn” without being taught explicitly. The idea is that a computer,

or rather a computer system, should be able to observe reality and learn from

observations the same way humans can. This contrasts the traditional model where

the computer is instructed explicitly what to do. Somewhat simplified the type of

machine learning used here consists of two phases: the training phase and the

classification phase. During the first phase the computer is observing the world in

order to find patterns and learn how it works. Once the computer has acquired the

necessary skills it can move on to the next phase in which it makes decisions based

on the things it has learned and the information it has acquired. One example

might be a computer that is being trained to understand the stock market. In the

beginning this computer will be fed with information about stock quotes, company

acquisitions, annual reports and the like. The computer might after a while predict

patterns in this data and a new phase can begin where the computer is fed with

similar data, but this time it makes decision whether to buy or sell stocks based on

its prediction for what will happen in the future.

Machine learning comes in different shapes and the type being considered here

makes classifications, which means that the computer tries to predict one class out

of a set of possible ones. In order to facilitate this a so-called classifier has to be

built, which is done during the training phase. During this phase the computer is

shown items, called examples. These examples are labeled with one of the

available classes. The computer will try to extract patterns from this data in order

to understand the connection between (specific properties of) the examples and the

classes. As an example let us say that the task at hand is for the computer to learn

to distinguish between good and bad pizzas. In this case the computer is shown

pizzas and told whether that specific pizza is tasty or not. The classes here are

“TASTY” and “NOT TASTY”. After a while the computer has hopefully been

able to spot patterns and been able to create a generalization, a model, from this.

The model can be simple (e.g., “all pizzas are good except the ones with curry on”)

or more complex. Once a model is generated the next phase, the classification

phase, can be started. During this phase the computer can be shown pizzas and use

its knowledge, the model, to decide whether it is tasty or not. If the simple model

above turned out to be correct the computer would simply look to see if the pizza

had curry on it and make a decision based on that.

The reference to “the computer” above is made in order to make the reasoning

more straight-forward. In reality there is no mystical computer that can do all this.

10

The actual learning, which is a set of computations, is conducted with the help of

an algorithm. The labeled training examples are fed into the algorithm which then

returns some result, the model. This result together with an unlabeled example is

then fed into another algorithm which will output an estimated class. This process

is illustrated in Figure 1. Many machine learning algorithms exist and one of them

will be explained later. Before going into details about any specific algorithm

some more attention will be put on general machine learning. In order not to make

it too cumbersome and abstract the explanation will not be fully general and

techniques exist that do not fit into the pattern described here, but that type of

algorithms are not considered in this thesis.

No matter what the examples are supposed to represent the form of the

representation is important. In the pizza example things were simplified by saying

that the computer looked at pizzas. From a conceptual standpoint this is easy to

grasp, but it is hard in reality to understand how this will be done. The computer is

not able to interact and investigate the pizza in the same way as a human being

faced with the same problem would. The actual pizza has to be represented in

some way before it can be fed into an algorithm. This representation can take

many different forms and choosing which one to apply is important. Among other

things it is possible to represent it with the dimensions of the pizza, the number of

ingredients or the type of ingredients.

To complicate things further the best representation depends on the goal of the

whole exercise. If the goal is to make a computer distinguish between American

11

Figure 1: Overview of machine learning.

and Italian pizzas the height is probably important. If the goal is to figure out how

much a pizza will cost the number of ingredients might be an important factor. If,

on the other side, the tastefulness is to be decided as in the example above the type

of ingredients must be of high importance. One might ask oneself if the simplest

thing would not be to use all possible attributes. The algorithm that is being used

should be intelligent enough to find the important attributes and ignore the rest,

and this is indeed true. The problem is that even in uncomplicated examples like

this the amount of possible attributes, or properties, is enormous. Calculating all is

simply infeasible. The pizza can, for example, be represented by the day it was

made, how long time it took to make it, its height above sea level, in which country

it was made, its temperature, in what type of oven it was made, if the ingredients

were above or below the dough, the name of the pizza baker's dog, the velocity of

the pizza, and so on. Another problem that can arise if all attributes are used is that

coincidental patterns can emerge. This is likely to happen if attributes are used that

have many values. Say for example that one attribute is the pizza baker's age in

milliseconds. It is unlikely that several pizzas will have the exact same age; hence

pizzas can be perfectly divided into tasty and not tasty by writing down a list of

ages that produce these two types of pizzas. These types of patterns are only

coincidental and not actually useful. This type of problem is likely to occur if an

excessive number of attributes are used.

As seen above the best representation to use is hard to find but important to get

right. A great help in finding an appropriate representation is to ask people well

acquainted with the field, so-called domain experts, about their ideas. Someone

well-familiar with pizzas can tell us that the velocity of a pizza does not have

anything to do with the pizza being American or Italian. In a similar way such an

expert can point in a direction where extra attention should be focused. It might in

this case very well be that the ingredients should get as much attention as possible.

Potential domain experts in this example are pizza eaters, pizza bakers, professors

in physiology, and so on. The choice of appropriate expert may also depend on the

goal.

As illustrated above the type of machine learning algorithm needed must be

able to handle different types of data. The number of ingredients is represented by

a numeric value where there is an internal order. Rules concerning these values

usually split them at some specific number in order to make two classes. One

example is the rule “pizzas with fewer than three ingredients are cheap”. On the

other hand there are also attributes, called categorical or nominal, which have a set

of possible values. One example of such an attribute is the country in which a

pizza is made. A rule such as “pizzas made in a country less than Norway taste

bad” does not make sense. Instead specific rules must be made for each of the

possible values. The issue with different data types is present concerning the

output too. In some cases the result should be a numeric value rather than a

12

categorical. This might for example be true when determining the estimated price

of a pizza.

Except for delivering a result, like a class, some algorithms can also determine

a confidence level. This level is an indication of how certain the result is, in other

words how much confidence one should have in it. This can be very useful when

incorrect classifications are more expensive in one direction than the other. A

spam filter for example tries to remove unsolicited and unwanted email messages

based on a set of criteria. If the filter is sure that the email is either legit, often

called ham, or spam it is clear what action to take. If the filter on the other hand is

unsure it is much better to keep the potential spam than to delete it risking the loss

of a real, possibly important, email.

It is important to avoid overfitting during machine learning. Overfitting means

that the model that has been trained so intensely on one set of example that it is not

likely to generalize well. Recall once again the pizza example. In situations like

this it is not unusual to assign id numbers to all items in order to easier keep track

of them. One possibility is that the machine learning algorithm would use these id

numbers and find a “pattern” among them (e.g., “pizzas with id numbers 2, 3, 5

and 7 are tasty, while 1, 4, 6, 8 and 9 are not tasty”). This would not generalize

well at all and the model would be unable to handle a new unlabeled pizza with id

10. To avoid this overfitting it is important to test the model on new data that was

not available during training. If performance is satisfactory on unseen data the

classifier is believed not to be overfitted.

2.4.1. Decision Trees

One widely used algorithm in machine learning is the decision tree algorithm.

Strictly speaking there is not just one decision tree algorithm; instead there are

several slightly different algorithms available. The general idea is nonetheless the

same and the focus will be on the principles so the exact internal workings are not

important here. What a decision tree algorithm does is build a decision tree during

training. The tree in itself is then traversed when a classification is done.

A decision tree is a tree where the nodes are conditions, the edges are results to

those conditions and the leaves are decisions. This may sound more complex than

it is, hence an example might be helpful. Figure 2 shows a decision tree from the

pizza example used earlier. This tree is a model that an algorithm has produced.

The idea is that anyone who wants to know if a certain pizza is tasty or not can

consult this decision tree. The first step to take in such a process is to look at the

root of the tree. This is a node and should therefore have a condition. In this case it

says “curry?” which refers to if the pizza has curry on it or not. Whether the pizza

has this or not defines which of the two possible edges to follow. If the pizza does

not have curry on it another node will have to be processed in the same way.

Sooner or later a leaf will be reached. The leaf contains the estimated class. The

13

tree presented here is very small in order to keep the example simple. Real

decision trees are generally much larger.

One characteristic of decision trees is that they are very readable. A decision

tree can quite easily be read and understood by someone who is not acquainted

with machine learning. Even if the tree in itself is not understood it is, without

much effort, possible to translate the tree into rules. The rules produced can be

quite formal, but except for that they resemble familiar structures such as

instructions or simple laws. The example tree above can be translated to the

following list of rules. It can afterwards easily be translated to less formal rules

that should be easily understood by everyone.

If the pizza contains curry then it is not tasty
If the pizza does not contain curry and is not warm then it is not tasty
If the pizza does not contain curry and is warm then it is tasty

Having a readable model is especially helpful when talking to domain experts.

The transparency provided by this solution is also good for “sanity checks” on the

model. Actually seeing the model is good to avoid overfitting, avoid trusting

coincidental patterns, complying with applicable laws3 and so on. A model that

anyone can look at and understand might also have the benefit of easier being

trusted than an opaque model looking like a black box.

Another appealing aspect of decision trees is that only used attributes need to

be calculated. In order to do a classification all attributes from the root down to the

leaf in question needs to be calculated, but there is no need to consider other

properties. In some cases this is not so important but if the properties in question

are time-consuming to calculate this might be appealing.

3 It is in some countries illegal to discriminate people based on for example race [WF05].

14

Figure 2: A simple decision tree with two nodes representing conditions and three leaves.

3. Stardoll

This section aims at providing all information about the community at which this

work has taken place, Stardoll, needed in order to understand the rest of this

report. Some of the information presented is not strictly needed, but it is provided

for those who want to fully understand the context. Some terms used later on, such

as stardollars and starpoints, are explained in this section. This section also

explains in details how abuse reports are structured and how they are currently

handled. Finally some different approaches for automated methods are listed

together with a discussion about the effects of those methods.

The description about Stardoll given here is rather detailed. It should be

stressed that this does not imply that the work performed is only relevant under

these exact circumstances. Many community sites have features in common, but

they are sometimes presented under different names. The work presented should

be fairly generalizable.

3.1. General Information

Stardoll is a community site which lets its users play with and dress up paperdolls.

Along with hundreds of celebrity dolls all users can create their own doll

representing themselves, a so-called MeDoll. The focus on the site is on fashion

and celebrities, where the dress-up game is a very central part. In addition to this

the site has all the features that can be expected from a social networking site

including profile pages, instant messaging, chat, friend lists, guestbooks, blogs and

clubs.

The part of the site where celebrities are dressed up is open to everybody and

there is no need to register in order to access those games. The user is given the

opportunity to choose between over 400 celebrity dolls to dress up. When the

preferred doll is selected the user will be taken to the Flash-based dress-up game

were the user can dress the doll with the clothes available in the game. On top of

the celebrity dress-up a few other games are available for everybody to play. One

example of such a game is a game where the user should find clothes that have

been hidden among other objects.

A user who decides to sign-up for a free membership on the site gets, in

addition to what was mentioned in the previous paragraph, access to the

15

community section of the site. This means that the user can create their own space

including a MeDoll, a profile page, a guestbook, a blog and other similar features.

The MeDoll, which can be created so that it looks like the user does in real life,

has only underwear on from the beginning. Additional clothes, and other

accessories for the doll, can be bought in the virtual shop Starplaza.

In order to buy items on Starplaza, or use a service that costs money, a virtual

currency, stardollars, are used. All new members are originally rewarded 25

stardollars and active members will occasionally receive more by earning

starpoints. Starpoints are each night handed out to users that have been active

during the day. Writing guestbook entries, blog entries, comments about dolls and

performing other activities that enrich Stardoll gives starpoints to the author

according to a specific scheme. When a user has certain amounts of starpoints they

will receive a bonus in some form, one of which is more stardollars. If this is not

enough for a user it is possible to buy extra by using real-life money. To protect

children from spending more than they should an upper limit is set for how much

stardollars that can be bought in a certain amount of time.

Being a member makes almost all features available, but there are a few which

only can be accessed by superstars. Superstar is a time-limited V.I.P. membership

which gives the user access some additional features and also lets the user access

some functions and dolls before they are made available to everyone. Users who

buy stardollars automatically become superstars for a certain period of time.

Celebrities are a central part of Stardoll. The dress-up game is centered on them

and many users are passionate fans of one or more celebrities. In order to make the

celebrities more alive a concept called RealCeleb has been founded. The idea is

that real celebrities register on Stardoll in order to get access to the same features

as a regular user would have. In this way it is possible for a user to have these

celebrities as their Stardoll friends, sign their guestbooks and read more about

them on their profile pages. This also gives celebrities opportunities to reach out to

their fans. Current RealCelebs include Hillary Duff, Avril Lavigne and Heidi

Klum.

The main target group for Stardoll is girls in the ages seven to seventeen who

are interested in fashion. The site currently has more than seventeen million

registered members, out of which 91% is female and 67% between seven and

seventeen. The site is available in 15 languages and its members come from over

250 countries around the globe. During 2007 Stardoll won an award in the

AlwaysOn 100 Top Companies awards [Kel07]. The site was also a winner in the

Cnet sponsored Webware 100 awards 2007, which ranked the best web 2.0 sites

[Web07].

16

3.2. Abuse Reports at Stardoll

In order to provide a friendly environment, Stardoll has rules that all users must

follow but unfortunately these are sometimes violated. With such a big user

community it is impossible for the staff to keep track of all offenses on their own,

so they have to rely the users. If someone sees something that is against the rules

they are supposed to report it to the Customer Service, which will investigate it

and take the appropriate actions. Notifying the Customer Service about a potential

abuse is done by filing an abuse report, which is easily done by clicking on an

exclamation mark (!) icon. These signs are available almost everywhere on the site

and are associated with an object. In a guestbook for example all posts have an

exclamation mark after them. If one of those posts would violate the rules the user

is supposed to click the mark that is associated with that particular post. Figure 3

shows an example of a post with an exclamation mark associated with it.

A form for filing the abuse report is shown to the user after the exclamation

mark has been clicked. The user is asked to provide information about the offense

in order to simplify the handling of the report. The first thing the user will be

asked about is the nature of the offense. The answer should be one of the

following:

• bad language,

• threats,

• shows email, phone or address,

• asks for email, phone or address,

• asks for password,

• other.

After the category has been selected the user is offered to write a description of

the offense. This is done in an ordinary text field and the user can choose between

ignoring the field altogether or writing an elaborate description of the offense in

question.

Except for the two explicit fields (category and description) mentioned above,

other information is associated with the report automatically. This automatically

attached data contains a reference to the reported object and id numbers for both

the reporting and the reported user. All users on Stardoll have a unique id number

from which it is possible to find the user in question and get additional information

if that is necessary. In addition to this information some metadata, such as date, is

saved.

17

Figure 3: An example post containing inappropriate content.

All the reported objects have a textual representation. This might seem trivial,

but it is worth pointing out. Some objects, such as guestbook entries, are already

textual by nature so in such a case the difference between the object itself and a

textual representation of the object is only philosophical. For some other objects

this distinction can be more important. A user's profile page can for example be

formatted with different text colors, sizes, fonts and so on. It is worth to consider

how this should be handled and decide whether to include formatting information

in the textual representations or not.4 Some object that are present on Stardoll do

not have an obvious textual representation. One such object type is images that the

users can upload. These object can, however, not be reported. Images are checked

by the Customer Service after they have been uploaded but before they are shown

on the site. Because of this all images that are seen on Stardoll have already been

approved hence there is no need to report them.

The users of Stardoll are filing approximately 20000 reports each week. The

aim is to handle all reports within three days, but sometimes this period can be

substantially longer. At the time of writing the oldest report that has not been

handled was filed eleven days ago, but normally delays are shorter. Problems can

occur that causes tops as high as this or even higher. During the process users can

not track the progress of their reports and they will not be notified about how it

was handled.

About 39% of all reports that are being filed are about actual offenses. The rest

are not and these reports are, once it has been established that they are false

reports, ignored. Incorrect use of the reporting system can take many forms, but

four of the most common ones are listed below.

Reported behavior does not violate the rules. The users of Stardoll do not

always know what is, and what is not, an accepted behavior, which result in

reports being filed about behavior the individual user finds inappropriate but are

allowed on Stardoll. An example of a report falling into this category is a report

filed against a user who states that they are atheists. One user may find it

inappropriate to say that God does not exist, but this is not against any rules.

Offense done somewhere else. Sometimes reports are filed about actions taken

on another site or network, such as MSN Messenger. The Customer Service at

Stardoll can not investigate this further and must ignore the report.

Pure abuse of reporting system. It is quite common that friends suddenly fall

out with each other in real life and sometimes this result in reports on Stardoll.

These reports are generally accusations about the former friend now selling drugs,

threatens to kill everyone or doing other extreme activities. Reports can also be

filed out of jealousy against people who get more attention.

4 It has been found while doing work on spam filters that ff0000, a representation for
bright red, is a good indicator that a message is spam. [Gra02]

18

Report sent instead of instant message. Stardoll tries to be very clear about

what filing a report means, but the system is at times misunderstood anyway. The

most common mistake is to use the system in order to send an instant message to

the reported users.

3.2.1. Handling of Abuse Reports

As mentioned above the reports are handled by the Customer Service, which

reviews the potential offense and checks it against Stardoll's rules. If the reported

potential offense was a real offense and a violation of the rules the appropriate

actions are taken. The possible actions to take are to send a warning to the user or

to delete the user right away. There are two different levels of warnings. The first

is called a soft warning and the second a final warning. The latter type is more

severe than the first and it will be followed up by the Customer Service after a

certain period of time. If the user has not changed either their general behavior or

some specific object, such as an offensive wording, within that time the account

will be deleted. Three soft warnings can also cause the deletion of the account.

Accounts can also, as stated above, be deleted without any prior warning but this is

seldom done. It might be done if it is likely that the main reason, or only reason,

the user is on Stardoll violates the rules. One example of such behavior is when

users sign up for an account only to find someone to have cyber sex with.

All reports that have not yet been handled are listed in the administrative

interface in the same order they were written. The main workflow is for the

Customer Service Representative to take the first report in the queue, analyze it,

take the appropriate actions, set the report quality, and then move on to the next.

Setting the report quality means classifying the report as being good, bad or

nonsense. The first category, good, means that the report was about an actual

offense and that actions were taken. The second and third category means the

opposite and that no action was taken. Originally a distinction was made between a

bad report and a nonsense report. The first was when the reporting system was

used correctly but the reporting user and the staff did not agree on whether it

violated the rules or not. The report mentioned above about reporting someone

because they were an atheist is an example on a bad report. A nonsense report on

the other hand is a result of the reporting system being used incorrectly. The

previously mentioned example user who tried to send instant messages via the

reporting system would file nonsense reports. A rule of thumb is that bad reports

are filed when the rules are misunderstood and nonsense reports are filed when the

system is misunderstood. This distinction has not always been honored and some

different rules for distinguishing between bad and nonsense exist so the

classifications among old reports are not consistent. From here on the distinction

will therefore be ignore and in the rest of this report abuse reports will be said to

be either good or bad.

19

In addition to the standard first-in, first-out queue a view listing the most

reported users are available. This lists the users who have most reports filed

against them. This makes it possible for the Customer Service to spot if some user

is causing a lot of trouble on the site. A user signing-up for a membership only to

violate the rules, a so-called troll, will generally cause many other users to file

reports shortly after one another. If only the queue view were used it would take a

few days before the first report about this specific user reached the top and was

handled. In the meantime this user could have caused lot of trouble and upset many

users resulting in unsatisfied users and many reports for the Customer Service to

handle. With the help of the additional view this type of behavior can be stopped

earlier than it would have otherwise, since the troll quickly would end up being

one of the most reported users.

3.2.2. Overview of an Abuse Report

Figure 4 shows an overview of an abuse report. The user PrettyFayed has written a

message in a guestbook promising to give the owner of the guestbook 100

stardollars if they reveal their password. Asking a user for their password is a

violation of Stardoll's rules so users who see this message are supposed to report it

by filing an abuse report. The user chloe92 sees this entry and files an abuse

report. The corresponding category is chosen and an informative description is

written.

Associated with the abuse report are the two involved users and the reported

object. This means that all data associated with these entities are available. It is for

example possible to see how many friends the user who filed the abuse report has,

which favorite color the reported user has and if the two users are friends.

Please recall that assumed names are used in all examples throughout this

report.

3.2.3. Example of Abuse Reports

A few examples of abuse reports are listed below. The first three reports, showed

in Table 1, Table 2 and Table 3, are examples of good reports. The users who have

filed these reports have understood both the rules and the reporting system

correctly. The reported users have in fact done what they are accused for and those

actions violated the rules.

In the forth example, showed in Table 4, the reporting user has understood how

the system should be used but used it incorrectly by filing a false report. Abuse

report should be used to report threats but the reported user has not threatened the

reporting user and the report in question is therefore a false report.

The fifth and last report, showed in Table 5, is an example of when a reporting

user has misunderstood the system. The reporting user is trying to get in touch

with another user by filing an abuse report, believing that these reports are sent to

the respective user instead of the Customer Service.

20

The first three of these reports would result in warnings being filed against the

reported users (i.e., yna_413, -xhot-lynnx- and Cherry_pop). The latter two on the

other hand would just be deleted.

21

Figure 4: Overview of an abuse report.

Table 1: Example of an abuse report (1/5).

Attribute Value

Category asks for password

Reporting user Avril-lover

Reported user yna_413

Description Shes realy nice but she askd 4 my password!!!!

Object type private message

Object hi can i borow ya password

Table 2: Example of an abuse report (2/5).

Attribute Value

Category bad language

Reporting user jammcc

Reported user -xhot-lynnx-

Description she is only sevan and she's using bad words!

Object type guestbook entry

Object kiss my azz u dumb bit2h

Table 3: Example of an abuse report (3/5).

Attribute Value

Category other

Reporting user Laura1787

Reported user Cherry_pop

Description she told everybody to 1) copy and past this into 7 peoples

album 2)press f6 3)log out 4)log in then you will

aoutomatically have 25 stardollars

Object type album comment

Object 1) copy and past this into 7 peoples album 2)press f6 3)log

out 4)log in then you will aoutomatically have 25

stardollars

22

Table 4: Example of an abuse report (4/5).

Attribute Value

Category threats

Reporting user tIkKa

Reported user queenashley

Description she has threatined me by saying that she was going to beat

my butt

Object type broadcast message

Object im so bored so i need friends

Table 5: Example of an abuse report (5/5).

Attribute Value

Category shows email, phone or address

Reporting user emopower

Reported user Garcia10101

Description do u want to be my frend

Object type doll comment

Object hi evry one come check out my page !!! l8r

3.3. Possible Uses of Automated Methods

Automated filtering of abuse reports is not the only way automated methods can

help to deal with large amounts of data. Four methods, including the filtering

option, will be presented below together with some considerations regarding them.

All methods are focused on improving the handling of abuse reports since that was

the aim of this work. It is worth pointing out that this is by no means the only area

an automated method can help a community site. If users can buy items or

services, which is true in Stardoll's case, an automated method can be used to

optimize advertisement parameters for those items and services in order to

maximize the conversion rate (i.e., the number of users who buys the item or

service thanks to the advertisement). For websites mainly depending on high

volumes of traffic, such as sites financed by advertisements, a helpful automated

method might identify patterns that lead to users returning and take the appropriate

actions to make sure that those patterns occur more often.

Before dealing with possible ways an automated method can help the Customer

Service handle abuse reports it is worth describing the problematic parts in the

current processes. As mentioned earlier all abuse reports are handled by hand on a

one-by-one basis. Normally the report first written is the one first handled. There

23

are two major drawbacks of this system. One is that the workload on the customer

service is large. Dealing with more than 20000 reports each week requires a lot of

work. The other is that reports, especially extra important such, are not handled as

quickly as they should. The last problem is somewhat mitigated by the separate

view that lists reports based on how many other reports are filed against the same

user. Even though this list captures high-profile abusive users, the average report

still takes a long time, usually a few days, to handle. It is desirable to shorten this

time and act faster. If a user for example asks other people for their passwords, an

activity often referred to as phishing, it is important to act as soon as possible in

order to prevent users from giving away sensitive account information.

3.3.1. Ordering Reports by Priority

One lead on how the process of handling abuse reports could be improved was to

prioritize the reports so that serious abuses could be handled first and less serious

abuses afterwards. One benefit such a system would provide is that important and

severe abuses could be dealt with right away instead of laying in a queue for a few

days. The implication of this is that less prioritized abuses would take longer time

than today to handle, but this might be an acceptable side effect. In the long run it

is likely that the amount of reports to handle would reduce since abusive users

could be spotted earlier and actions could be taken against them sooner, stopping

them before they could cause further concern.

Prioritizing reports as outlined causes problems that must be dealt with. One

problem is that of starvation [Tan01]. There is a risk that reports with low priority

never will be handled because they would never reach the top of the queue since

new reports, most of which will have a higher priority, always will get filed.

Solutions to this problem exist and one approach is to increase the priority of

reports over time. A report that has been in the system for a certain amount of time

will automatically have its priority increased. This will guarantee that even reports

concerning less prioritized abuses will get handled at some point. Unfortunately

this solution also reduces the win of the system. Even with this system in use,

reports about less prioritized abuses might get handled before higher prioritized

abuses due to this procedure.

Another, perhaps more important, problem is that reports are not assigned with

priorities today. Reports are flagged as either good or bad but they are not

prioritized at the same time. These two properties might seem very closely related

but there is in fact an important difference. It is possible for a report to be good but

not prioritized and vice versa. Consider for example a user who is reporting

another user because they used a somewhat inappropriate language. These issues

are important to handle, but few would probably argue that it is a pressing issue

that must be dealt with right away, hence the report has a low priority. It is still

possible that the report is good in the sense that the right object has been reported,

24

a good text has been written about the abuse and the abuse has actually taken place

and it violated the rules.

Without manually assigning priorities at the time of handling the priority is

hard to determine. Some basic rules can be made based on simple criteria, such as

a report against someone asking for passwords should have a higher priority than

the report outlined in the previous paragraph about the use of bad language. These

rules based on the correlation between priority and type of abuse can be helpful

but they can also be misleading. A threat for example sounds very serious and

should probably be assigned the highest priority, but at the same time these reports

are often false and written in ill will. The most common reason for reports like this

is that two people fall out with each other and one of them wants revenge and

reports the other for the worst thing they can possible think of, such as selling

drugs and threatening to kill people. Another issue worth taking into consideration

is that there are also variations in each group. Bad language might in its simplest

form not be highly prioritized, but it might very well be if the reported user is

using very offensive language in places that are easily accessible to others and

often viewed.

3.3.2. Profiling Users

It is possible that a small subset of the users is responsible for the majority of the

reports. This assumption seems to hold when looking in the database; only 3% of

all users are ever reported. If it would be possible to find a common pattern among

these users it would be possible to take actions against that type of user in time.

Assume for example that a pattern is found saying that users in a certain group

start abusing the system if they get bored, which they are likely to do if they do not

have any friends to interact with. An appropriate action to take in such a situation

might be to make it easier for this type of user to find friends. This might for

example be done by making a link to friend finding functions more visible for

these users.

A more straight-forward approach would be to try to find users that are likely to

violate the rules and list these in a separate view in the administrative interface.

The Customer Service could then browse through all these users and take

appropriate actions. This would make it possible to spot violations of the rules

even before any (ordinary) user saw them and filed abuse reports.

Profiling has moral implications that must be considered. It is for example

possible that a system like this would be too general and target innocent people,

possibly causing them problems, because of properties such as nationality, sex, age

and other factors which are hard or impossible to control. It might also be the case

that people are formed after other people's expectations. If a group of people are

always believed to do the wrong thing and never act rightfully, it might be the case

25

that those people might actually start behaving that way.5 This could mean that the

amount of rule violations would increase within the targeted group.

3.3.3. Finding Specific Behavior

A wide variety of different types of abuses are found in the vast amount of reports

available and automate handling of all these in a satisfying way is probably an

infeasible task. It might, however, be possible to automate handling of a few

common types of abuses. One such abuse is chain mail. It is quite common, yet

against the rules, to send chain mails to other users. These mails often include

some treat or threat encouraging the user to keep resending the mails. The user

might be told that they will receive stardollars if they comply or that their pet will

die if they do not. If these chain mails could be identified automatically it would

be possible to automate the handling of these. One approach to the problem would

be to have a separate view listing all occurrences of chain mailing on the site,

regardless if that particular chain mail has been reported or not. It would in this

case be possible for the Customer Service to act immediately and send a warning

to the offending user hoping that further resending will be limited. Another

possibility is that all filed reports about chain mails are automatically forwarded to

a system that automatically could decide if a warning should be sent or not.

Identifying chain mails can be done in several ways. One approach is to have

the Customer Service manually flag messages as chain mails. If a similar message

surfaces at any later time the system can be confident that the message in question

is a chain mail. Another approach is to study how messages spread around the site.

Clear indicators of chain mails are if a user is sending the same message to

multiple users and if the exact same message has been sent many times, possibly

from different users. Some sort of precaution must be taken here in order to not

have the system trigger on messages that are common, but still legit. It would be

very unfortunate if “hi” would be considered a chain mail. A third approach is to

try to analyze the content in the messages and try to interpret (part of) the semantic

meaning of the message. A possible starting point for investigation would be to

look at spam filters.

Chain mails are by no means the only abuse that could be automatically

handled. Another possibility is to look at phishing. A simple indicator might be the

existence of the word “password”. It is probably quite hard to ask someone for

their password without using the word itself, but at the same time the word is

rarely used in other situations. Yet another possibility is to look for actual account

theft. If a user is filing a report saying that someone has stolen their account it

might be interesting to see if the user is now logging in from another IP address (or

5 Several studies have shown that people perform worse if they are told that the group
they belong to are by nature inferior. Women perform worse on math tests if their
gender is highlighted, since women traditionally are not believed to be good at math.
Negative stereotypes can, in other words, be self-fulfilling. [DH06]

26

ISP) than before or if usage patterns have changed. These pieces of information

can then either be used to act automatically or give the Customer Service

additional information when they are handling the report manually.

3.3.4. Filtering out Reports

One solution that would be beneficial from several points of view is to reduce the

total amount of abuse reports. This would reduce the workload put on the

Customer Service and it is also likely to reduce the waiting times. Reducing the

amount of reports might seem as an infeasible problem and it is indeed not

acceptable to just randomly delete reports. Instead only reports that do not contain

any important information could be deleted while all other reports should be kept.

This might be possible if consideration is given to the quality of reports. Recall

that 61% of all reports are bad and no actions are taken due to them. When the

Customer Service finds such a report they will investigate the matter in order to

see that it is indeed a bad report and then set the appropriate report quality and

move on to the next report. No information would be lost if this process would be

automated. From the Customer Service's perspective it will appear as if the amount

of reports has been reduced significantly, but without any side effects.

If the amount of abuse reports could be reduced to less than half the workload

would decrease significantly which in turn would reduce the time it takes to handle

reports. If all reports would be handled quicker the need to further prioritize

reports would probably disappear. One question that might arise is if the workload

would really decrease enough for these positive effects to be seen. It is easy to

assume that the time it takes to handle a bad report is significantly less than the

time it takes to handle a good report. Some actions, such as writing a warning,

must be done in the latter case, which they do not in the former. This is indeed true

but bad reports can sometimes take longer to investigate. Take as an example a

user filing a report saying that they received a message from someone who offered

to sell drugs, but the reported object does not contain such information. Since this

is a very serious accusation it is reasonable for the Customer Service to look into

this issue further by, for example, skimming through all messages the user

received the days prior to the filing of the report. It is possible that the user writing

the report did receive such a message but accidentally clicked the wrong

exclamation mark when reporting it. This process can take time and in this case it

would have been faster to handle a good report where the actual offense was seen

already in the object actually reported.

The first paragraph in this section states that filtering out bad reports have no

side effects since no action is taken due to these reports anyway. The drawback is

that making a perfect filter is hard, especially if the data is noisy. Any filter of this

type is likely to make two sorts of mistakes. The first mistake is that some bad

reports are likely to be missed. This will reduce the reduction of workload since

27

the Customer Service still have to investigate these reports manually. The second

mistake is probably far worse, namely the removal of good reports. It is possible

that the filter will trigger on some of the good reports and remove them, which is

serious since valuable information might be lost. This is an important drawback

worth taking into consideration.

3.4. Potential Benefits and Moral Implications

Some of the benefits and implications of an automatic filtering system for abuse

reports have already been mentioned, but it is worth summarizing them in a

separate section. The potential benefits of the system are large. If the system would

be perfect it would remove all bad reports, which is 61% of all reports. The time

saved thanks to such filtering would be most noticeable; in average it takes 40

seconds to handle a report and given that approximately 20000 reports are written

each week the time saved does make a difference. The most obvious change might

be seen from the economical point of view. If less time needs to be put on this

issue, time worked and hence salaries paid, can be reduced, or the staff involved in

the process can focus their attention on other tasks. Except for the monetary issue

the reduction of workload could result in shorter response times, which is highly

desirable. Shorter response times have several benefits. It would mean that

violations against the rules would be noticed faster and offending material could

be removed before it has been seen by many users. This is a clear benefit since the

environment would be safer if potential abuses could be investigated promptly.

This type of work has large potential benefits, but it might still be morally

debatable. The users on Stardoll write reports when they see what they think is a

violation of the rules, perhaps because they feel uncomfortable and even

threatened. Letting a system automatically go through these reports and delete

some of them is by many people perceived very differently from having humans

read through all reports. It is nevertheless important to keep in mind that a manual

process does not guarantee correctness. The current manual process is discussed

from this perspective in Section 7.2 on page 85. Furthermore, it is also important

to keep in mind that a successful filtering system could shorten response times and

by that, as seen in the previous paragraph, make the site safer. The trade-off

between these aspects is not trivial to handle.

In addition to the immediate effects it is wise to consider the long-time effects

of implementing this type of system. Since predicting the future is hard, especially

in volatile environments such as Internet communities, it is difficult to anticipate

how a system like this would behave in the future, but it is possible to make some

educated guesses. One prediction that is likely to hold is that the number of

members on Stardoll will keep increasing. When this thesis work was initiated

Stardoll had seven million members and when this is being written the number is

up to seventeen million. When the number of users is increasing the number of

28

reports is also increasing and the more reports there are the more effect a system

like this will have. Figure 5 shows how the number of reports received per week

has increased when the number of users has increased. The correlation seems to be

fairly linear. The most eye-catching artifact might be how the number of reports

was exceptionally high when the site had 7 million users and exceptionally low

when the site had 8 million users, at least in comparison with the trend line. The

reason for this artifact is unknown but no major changes to the system should have

been done during this period.

Figure 5: Diagram showing the correlation between number of reports filed and number of
users.

29

4. Preprocessing the Data

Before the data can be fed into the machine learning algorithm it must be

preprocessed. This processing consists of many steps and is a large part of the

overall work. This section will first explain preprocessing in general and then

discuss the steps taken during the work preformed.

4.1. Theoretical Aspects

Preprocessing data is an important and time-consuming part of any machine

learning process. Mostly, the training phase is seen as the heart of a machine

learning process. It is during that phase the learning algorithm is used and it is at

that point the system is making the generalized model that is most likely the output

the whole process aimed at producing. The problem with this view is that it does

not reflect how time is usually spent in real projects. Training is usually only a

small part of the total amount of work done and one large part of the rest is the

preprocessing phase. [LS95,BAS+98]

The aim of the preprocessing phase is to gather the data that should be used and

to make it available in a form that is usable in the learning phase. During the

learning phase each example should be presented in the form of a set of attribute-

value pairs, where one pair contains the class. Data is seldom available in this

format originally for several reasons. It is first of all possible that the data is spread

out. If the data is saved in a database it is likely that several tables are used and

then data must be fetched from all relevant tables and collected in this flat format.

Furthermore the data is likely to be presented in another form than the desired.

4.1.1. Preparation

Some practical details that can potentially cause concern must be dealt with during

the preprocessing phase. These practicalities are not necessarily related to machine

learning in any way, but they must be overcome in order to continue the work.

Getting access to the right data is one thing that must be done. This can be as

simple as getting a specific file or login information to a database but it can also be

more complex depending on where the data is stored. If the data is currently

accessed by other processes it might be required that the data is copied to another

environment. Accessing such an environment or setting one up can be more

complex than first imagined.

30

It is not necessarily the case that all data gathered can be used; hence some

initial filtering might be required. It is possible that some examples in the database

do not already have a class or that the class is likely to be incorrect, or at least not

helpful. Reasons for having such examples may vary. One explanation for the

presence of invalid data is that testing has been performed and that fragments of it

are still in the database.

The data available at this point is the total amount of data available and it

should be used both for training the classifier and to test its performance. It is not

appropriate to use the same set of data for both these tasks due to the risk of

overfitting mentioned earlier. To avoid this the total amount of data is preferably

split into two subsets before any further work is done. One subset will be used to

train the classifier and the other will not be looked at before a classifier has been

created. The latter data, called testing data, can only be used once. Assume that

several classifiers were tested on the same testing data and that the best one was

selected as the final classifier. The selected classifier would in this case not be

independent of the testing data any longer. The result is likely to be too optimistic.

The drawback of this approach is that a classifier can not be optimized. Once its

performance is known, when it has been tested on the testing data that is, it is too

late to improve it. The solution to this problem is to further divide the training

data. One part of this data can be put aside before a classifier is trained and that

data can later be used to test the classifier. This scenario does not violate any

dependency constraints. The part of the training data that is put away before the

actual training is called validation data. An overview of these three datasets is seen

in Figure 6.

One question that might arise is how the dataset should be split. It is not

possible to give an exact percentage for how big the training and testing datasets

should be and the exact number may also differ between different applications. It

has in many real-life situations been shown that putting away 25% for testing often

give good results [WF05]. Extracting the validation set can be made similar.

Validation and testing data serves the same purpose so it is reasonable to assume

that the same distribution between sets should work satisfactorily.

Stratified extraction is a technique that can be used to improve the quality of

the different datasets. Stratified extraction means that the distribution between

31

Figure 6: Overview of data sets.

different classes is preserved even after the split. [WF05] This means that if 25%

of all examples in the original dataset belonged to class A, then 25% of all

examples should belong to class A in the training, validation and testing datasets

too.

An example might help explaining both the different datasets and stratified

extraction. Assume there are 160 pizzas available which all have been classified by

domain experts as either tasty or not tasty. Assume further more that 90% of all

pizzas, in this example 144 examples, taste good. Extracting 25% for testing means

putting away 40 pizzas. If this is done in a stratified way 90% of the extracted

pizzas, which would translate to 36 pieces, should by tasty. The remaining 120

pizzas, which should be used for testing and validation, are split in a similar way.

The exact result of the splitting can be seen in Table 6.

Table 6: Example of division into different dataset and stratified extraction.

Dataset Number of

pizzas

Number of tasty

pizzas

Number of not

tasty pizzas

All data 160 144 16

 Testing 40 36 4

 All training 120 108 12

 Validation 30 27 3

 Actual training 90 81 9

The exact proportions might sometimes be hard to maintain, but the result

should be as close as possible. It is easy to see why stratification might be

important by looking at an extreme case. Recall the example above where 25% of

all examples were classified as A, and assume that a testing dataset of 25% should

be extracted. It is in this situation possible for all exampled belonging to class A to

end up in the testing dataset and none of them in the training dataset. Since the

machine learning algorithm would not see a single example belonging to class A in

this case it would be hard for the algorithm to learn the characteristics of that class.

The algorithm would probably conclude that no examples belong to class A since

that is true for all examples it has seen.

4.1.2. Collecting Attributes

Collecting attributes is the main task during the preprocessing phase. It is

important to catch all needed attributes and also present them in the most

appropriate form. When this is done each example should contain a set of

attribute-value pairs which, in addition to containing the correct attributes in the

correct form, should be self-contained. It must be possible to take out each

example and look at it independently.

32

Making examples self-contained is done by explicitly stating all connections, if

any, that are believed to be of importance. Assume for example that an automated

system should learn to recognize signs of intrusion in a computer system by

looking at failed login attempts. One such login attempt is probably not enough to

determine if the system is under attack or not. Even legitimate users can mistype

their password or accidentally mix it up with another password. The system will

likely need to know about how a particular example fits into a bigger picture. It

might be helpful to specify attributes that indicates how many previous login

attempts that have failed, if the specific host (if applicable) has successfully logged

in before and so on. All these attributes have to be specified within each example.

Making examples self-contained also means that data from several sources or

tables should be put together. In the pizza example from above all information that

was thought to be interesting was associated with the pizza itself. A pizza can for

example be represented with the list of ingredients that were used to make the

pizza. In some cases this is not enough and then focus must be shifted to metadata.

One example might be if we are trying to find out if a pizza is made purely out of

ingredients that are produced nearby. For this to work we need to know where the

pizza was made and where all the ingredients come from. If saved in a database

this information would probably be scattered around in many different tables. The

pizza would be linked to a pizza parlor which in turn would be linked to a physical

location. A similar chain would probably be found to trace the origin of the

ingredients. In order for the machine learning algorithm to work all metadata that

is thought to be useful must first be extracted and combined with the original

example.

Knowing which attributes to use is hard. Using them all is not feasible since the

set of all potential attributes can get enormously long even for seemingly simple

examples such as the pizza example. This implies that focus must be restricted to

some parts of the attribute space that appears to be extra interesting. Domain

experts, which are people who are well-familiar with the domain in question and

possess knowledge about it, can help determine where this attention should be

focused.

Determining which attributes to use is not always enough. Sometimes the

attributes are presented in a form that is not immediately understandable to the

machine learning algorithm. Many such algorithms can only deal with numeric and

categorical attributes, the former being numbers and the latter a set of predefined

values. It is possible that some attributes can not be directly translated to either of

these types. An example of such an attribute is a text attribute. Most algorithms do

not have a built-in way of handling text but it is still possible to handle it by using

an appropriate representation. The representation is responsible for transforming

the text into a set of attributes that can be handled by the algorithm. Several

representations exist and one widely used is the bag of words representation

33

[WF05]. Another type of attribute that can cause concern is timestamp attributes.

These attributes contain much information and perhaps important patterns but it is

not trivial to access it. The timestamps 1194368400, 1194956100 and 1195602300

all belong to the same day of the week, but a general purpose machine learning

algorithm would not realize that. If the weekday is thought to be important this

information must be extracted beforehand and saved as a separate attribute.

The attributes collected do not always contain data for all examples. It is often

the case that a certain attribute is not present for a certain example and this must

be handled in an appropriate way. In order to decide how to do this the reason for

the missing data must be considered. The reasons can be that the data is either

unknown or undisclosed.

Unknown. The value might be missing because it is simply not known. Say for

example that some entries in a database have been accidentally lost. After such

event no knowledge of what those entries were is available; the data is missing.

This does not say anything about the examples that were affected and the missing

values do not provide any information.

Undisclosed. The value might be missing because someone intentionally chose

not to provide it. Take a person's birthday as an example. If this field is left blank

in some database the birthday is unknown to the holder of that database, but it is

not completely unknown to everybody. The field was intentionally left blank and

that is actually a piece of information in itself. The subgroup of people that do not

want to supply their birthday may differ from the subgroup of people that do. The

important part is that this potential difference is not known and therefore should

not be ignored.

The difference between these two cases might not be crystal-clear in the

beginning but the subtle difference is very important. In the first case the missing

values should just be kept as missing and handled appropriately by the machine

learning algorithm. Exactly how this is done differ between algorithms and also

between training and testing, but most algorithms have some sort of mechanism for

handling this. In the latter case it is not appropriate to keep the missing values as

missing since this would force the algorithm to ignore the attribute, hence loosing

possibly important information. Instead these cases are handled by replacing the

missing value flag with an actual, but unique, value. As an example of this method

let us assume that one attribute is the country in which a certain event took place.

The country can, for example, be represented by letter combinations such as “se”,

“us” and “ca”. If this value was undisclosed this filed would initially contain a

value representing a missing value, such as NULL. During preprocessing this flag

would be exchanged with an actual value representing people who have chosen not

to enter a country. Care must be taken to ensure that this value does not already

exist in the data with another meaning. Consider for example the use of “no” in the

34

country example. This would be inappropriate and violates the rule of uniqueness

since the values in question is most likely already used to represent Norway.

4.1.3. Recovery of Data

The time factor can sometimes complicate the process of collecting attributes. For

the machine learning algorithm to work properly the data presented in the two

phases must be comparable. This means that the data that is shown to the

algorithm during training must be processed so it resembles the data that will be

presented to it during actual classification. In some situations this is trivial and

causes no concern. The image analysis software mentioned earlier that aimed at

identifying geological features in an image is an example of one such situation.

When the images were taken does not effect how attributes are collected. In

another of the example presented above, the credit card fraud detection system, the

time causes more concern. During training of such a system it is likely that the

algorithm will be presented with historical data but when actually deployed it will

be presented with live data. Assume for example that one attribute that is assumed

to be of importance is the balance of the account. In this situation it is important

that the examples presented to the algorithm have the balance as it was then. The

current balance of the account, which is the account balance some time after the

possible fraud, is not to be used since that value would not be known during live

classification.

The reason data must be recovered varies from situation to situation. In general

it can be said that data can be changed in three ways: added, modified or removed.

The way data has been changed does not change recovery much in the general case

but sometimes it can help, as we shall see in the next paragraph. It is also worth

keeping the three different modifying operations in mind during the preprocessing

phase so that no changes will be forgotten.

In real-life situations modifying operations can sometimes be reverted. The

most common situation might be when data is added. Timestamps are often

associated with all entries produced for one or another reason. Sometimes the

timestamp is part of the entry itself and something that is desirable to know. This

can be the reason that timestamps are associated with blog posts and news articles.

In some other cases the timestamp is needed from a business perspective. It is

necessary to know when bank transactions were made in order to calculate the

correct interest. No matter why it is present, a timestamp can help recover data. By

ignoring all entries that were added after the example in question was created

interference from new entries is avoided. A similar situation can occur when it

comes to removed data. It is often the case that data is not actually removed but

instead flagged in such a way that it will not be viewed under normal

circumstances. There are several reasons for using this method instead of simply

removing data. One is traceability since it in many domains is important to be able

35

to look back in time. Another is to be able to undo the operation. It is possible that

the removal was accidental and in that case it is desirable to be able to get the data

back. There may also be other reasons, such as performance, why data is flagged

as removed rather than actually removed.

Sometimes the data needed in order to collect all wanted attributes can be

recovered even if no timestamps and removal flags are present. If the information

is taken from a database being backed up it might be possible to use old backups in

order to get information about what values certain data had in the past. The same

might be true if logs are kept about changes in data. In that case it might be

possible to start from the current value in the database and reverse all actions up to

a desired point in time. If none of these possibilities are applicable one last

possibility is to gather live data instead of historical data. In some situation it is

possible to set up a system that records all needed attributes and then afterwards

assigns the appropriate class. Consider again the credit card fraud detection

system. An agent could be put in place that records all attributes, including the

current balance, when transactions are made. Once a fraud has taken place the

transactions that were carried out as a part of the fraud are marked. This procedure

will guarantee that data during training will look the same way as data during

classification, simply because it is gathered under similar circumstances.

Unfortunately it is not always possible to recover data completely with any of

the above described methods. It is possible that data sometimes are lost and in that

case it is not possible to gather attributes perfectly. There are several methods for

handling this and which to choose depends on the situation. Possibilities include

ignoring either the attribute or the possible change. Ignoring the attribute means

that attempts to recover the attribute will not be made and that the attribute will not

be used in the machine learning process. This might be feasible if it is not possible

to recover the attribute and if the attribute is believed to be changed frequently and

rather randomly. A person's mood might be one such example. If a person is happy

or sad today does not say much about how a person felt a specific day five years

ago. At the opposite end of the spectrum it is possible to ignore the change instead.

Doing so can be reasonable with attributes that are seldom changed. The country a

person lives in is not changed very often and it can be acceptable to assume that

the present country of residence is the same as it was six month ago for most

people.

There are other possibilities too but they mostly depend on the individual

attributes. In some situation it might be possible to acquire the exact value or

estimate it in another way. Other sources that apply to the domain can be helpful.

Government statistics can for example help determine certain patterns that can be

applied. It might not be possible to know exactly how much savings a certain

person had at a certain time but it might be possible to estimate it using knowledge

36

about the current value, changes that have taken place in the person's life and data

on how taxes and rates have changed.

Related data can also be difficult to recover. The problem is basically handled

in the same way but since it occurs in a slightly different way it is worth stressing

it. The fact that data is related does not always appear at a first glance but it is

important to avoid relying on data due to dependencies that will not be available

during classification. At the same time it is important to capture as much data as

possible in order to build a system with good performance. General guidelines for

how to handle this trade-off are hard to find but it is important to think carefully

about this issue during preprocessing. As an example of when the problem is very

visible, consider a system that aims to determine where bank robberies are likely to

take place. One might think that the locations of police units are important since

robbers perhaps choose banks far away from those units, in other words in areas

with little police presence. The problem with this is that if the timing is slightly off

it is likely that the system will come to the conclusion that bank robberies are

taking place in areas with an extreme high police density. The reason for this is

that police units will be called to the robbed bank when the robbery is known;

hence the density will be high afterwards. This correlation can not be used in a

system that should anticipate which banks will be robbed in the future. A further

complicating factor is that it is not always easy to know if the timing is off. Clearly

no one who aimed to determine the locations of police units at a certain time

would deliberately add half an hour to the time. It is, however, possible that the

data, in this case the location of police units, is only collected at certain intervals.

4.2. Preparation

The first step taken in the preprocessing phase was to take a snapshot of the live

database and save it in a local database. There were several reasons for doing so,

one of which was the load. Preprocessing the data, as well as doing the actual

processing, was very time-consuming and processor intense, which made it

inappropriate to do on a live database. Even worse was that the live database was

already having problem coping with the normal load. Another reason for using a

local copy instead of the live database was that a local copy will remain in its

current state while the live database will be constantly updated. In the live

database, a report that is not classified today can be so tomorrow.

The local database was an exact copy of the live database on all but two points.

Some sensitive information, namely email addresses and passwords, were removed

in order to protect the users' privacy. Neither of these fields was believed to be

important for the task at hand so this deviation was ignorable. More important was

that some of the tables in the live database were not copied. This issue will be

described in more details in Section 4.7 on page 45.

37

Before any other processing could take place some reports had to be removed,

some of which were disregarded entirely and some that were removed from the

working set but safely kept in a different place. The reports that were not further

considered at all were the ones that at the time of creating the database copy were

not yet handled. These reports did not have any class assigned to them and could

therefore not be helpful during either training or testing. There was also a category

of handled reports that had the class “INDIFFERENT” assigned to them. This

class does not provide any information and reports belonging to it are not useful to

keep. This special classification can be assigned to reports that for one or another

reason are not relevant. When a misbehaving user is deleted all reports related to

that user can be safely removed, and those reports could be assigned the indifferent

status. After these non useful reports were filtered out the database contained

633784 reports classified as either good or bad.6 Before any other manipulation of

the data took place a subset of the data was put away for testing. Recall the

importance of having separate datasets for training and testing in order to avoid

overfitted and biased results. The size of the testing set was chosen as 25% of the

total amount of data.

4.3. Attributes in the Report

The reports in themselves do not contain much information. Table 7 shows all

attributes available in an abuse report before it is linked together with other

information. The reports have the id numbers for the reported as well as the

reporting user, the category selected by the reporting user and a description of the

potential violation also written by the reporting user. The time the report was filed,

from which top domain it was filed and what language it was written in are also

kept in the report. In order to keep track of the reports each one of them is assigned

a unique id number. The report also contains the type of the reported object. The

actual links to the specific objects are contained in separate tables, one for each

object type. This is not much information to use in the machine learning process.

The id and timestamps are not useful attributes; instead they can actually harm the

process. The problem with id attributes has been discussed when talking about

overfitting. Timestamps are suffering the same problem since it is unlikely that

two reports are getting the exact same timestamp. Unlike the id attribute, however,

the timestamp attribute actually contains real information that could be important.

Someone might have a hypothesis that reports written on Tuesdays always turn out

to be good. In reality this was not the case and the timestamp attribute was also

ignored.

6 In reality reports could also be classified as nonsense but these were considered as bad
reports.

38

Table 7: Attributes available in abuse reports.

Attribute Description

Id A unique id number.

Reporting user The id number of the user filing the report.

Reported user The id number of the user the report regards.

Object type The type of the object that is reported (e.g., guestbook entry).

Timestamp A timestamp for when the report was filed.

Category The category the reporting user chose (e.g., threats).

Description The free-text description the reporting user wrote.

Top domain The top domain the report was filed from (e.g., com).

Language The language the report is assumed to be written in. This

attribute is used to redirect the report to a Customer Service

Representative that speaks the language the report is written

in.

The fields containing the id numbers for the involved users are not so important

in themselves. That a user has id 7798126 does not say much about the expected

behavior of that user, or how that user relates to other users. Luckily these id

numbers can be linked to users and all information available about them. Very

much information can be extracted this way. A few of them are the age of the user,

how long since the user registered at Stardoll and the user's favorite food. In some

situation this is fairly straight-forward, but it can be more complex. One such

example is when it comes to guestbook entries. Each user has written and received

a number of guestbook entries and one suggestion is to simply associate the

number of written and received guestbook entries for the user with the report.

Doing so ignores the content of the entries completely which is unfortunate.

Another suggestion is to include the length of the entries. Yet another suggestion is

to also analyze the messages and indicate if they contain bad language. Selecting

which attributes to use will be discussed in the following section.

When it comes to the description filed the exact content of it was not believed

to be of relevance. The reason for this assumption was that the field is used in

several different ways and sometimes not at all. It was decided that it was unlikely

that using an advanced representation would be worth the time invested. Instead a

simpler representation was used. A simple tool for extracting a few metrics about

the text was used. Table 8 lists all metrics that were outputted by the text analyzing

tool. The table also contains the result of running the tool on the example

description “This person started calling me names when I refused to send a gift”

found in the abuse report showed in Table 9.

39

Table 8: Attributes produces by text analyzing tool.

Name Description Example result

Length Length of the comment. 66

Punctuation Number of periods, question marks and

exclamation marks.

0

Words Number of words. 13

Long words Number of words longer than six characters. 3

Sentences Number of sentences. 1

Lowercase True if the comment contains a lowercase letter,

false otherwise.

true

Uppercase True if the comment contains an uppercase

letter, false otherwise.

true

Both cases True if both the above properties are true, false

otherwise.

true

Lix Readability calculated by Lix. 36

Lix is a way of calculating how easily read a text is. It was originally developed

for Swedish, but it has been tested on English with successful result. The lower the

number, the easier the text is. [And81] This value can therefore be used to get an

approximate value for how advanced the description is; whether it is written as a

children's book or a technical report. However, it is worth noting that Lix is

usually applied to longer and more properly written texts, and not to short

comments like this. The nonsense description “asdfasdfasdfasdfasdf” has a Lix

value 101, which would indicate that it is a very advance, technical and

bureaucratic text.

Table 9: Example of an abuse report.

Attribute Value

Category bad language

Reporting user annannanna

Reported user Digbu7

Description This person started calling me names when I refused to

send a gift

Object type private message

Object your a fugly whore

4.4. Attributes Suggested by the Customer Service

Using all attributes is seldom feasible since the list of attributes tend to be

enormously long. This implies that a real application must use a subset of all

40

attributes and that was true in Stardoll's case too. In order to focus the attention on

the most promising attributes from the start, domain experts were consulted. Those

were people working in the domain in question, thus likely having knowledge

about what affects the result. It is likely that a person working with classifying

reports, which would be a Customer Service Representative, has noticed a certain

connection and if that is the case it is wise to pay some extra attention to the

attributes concerned.

The Customer Service came up with four attributes which they thought

deserved extra attention. The first of these was the monetary aspect. A user with a

large economical investment has more to loose if being deleted from the site so it

is possible that these users are more careful about how they behave. It is also

possible to look at it from a wider perspective. The users investing time and money

in Stardoll are the users who like the site the most and care about what happens.

These users are not interesting in harming the community since this is something

they like. The second attribute was if a user has been a cover girl lately. Each day

one of Stardoll's users is rewarded with the cover girl title. This user will, in

addition to getting an amount of stardollars, be featured on the front page of

Stardoll's virtual magazine The Show. There is much prestige in winning this title

and users are fighting hard over it. Unfortunately, there is also a great deal of

jealousy involved. It is not uncommon that the winning user is accused of being an

unworthy winner and that other users feel that they earned the title more. It is

likely that these users abuse the reporting system and file reports against the actual

cover girl because of jealousy. The third attribute was if a user is kidlocked. This

is a lock that automatically gets applied to all users who are below the age of

thirteen when they sign up for an account. Users from the USA need, according to

federal law [Uni98], their parents' consent for removing the lock. Users from other

countries can unlock the lock themselves. When this lock is in place the users are

not allowed access to all features on the site and they can therefore not produce as

much reportable content as regular users. Because of this it can be assumed that

the kidlock is an important attribute to consider. The forth and final suggestion

was to consider if a user is a RealCeleb or not. RealCelebs are real celebrities who

are specially invited to the site in order to interact with their fans. These users

seldom browse the site like regular users. Instead they are interacting with other

users through special channels, such as celebrity chats. It is rather unlikely that a

RealCeleb would write a questionable guestbook entry for example. It has even

been suggested that it should not be possible to report RealCelebs in the first place.

It is worth noticing that all these four attributes pointed out by the Customer

Service have focused on the reported user rather than the report itself (e.g., the

category selected) or the reporting user (e.g., if the user filing the report has filed

reports before).

41

4.5. Attributes Used

The four attributes mentioned by the Customer Service were just a small fraction

of all the attributes that were used in the process. When all data had been

encapsulated in the reports each report had over 200 attributes. These attributes

were divided into four different categories, which will be explained in turn below.

Meta. Some metadata was still associated with each report, mainly for

traceability. The meta attributes were not used in the actual machine learning

algorithm. Typical attributes in this category were an id number for the report and

a timestamp for when it was created.

Defendant. The amount of information that could be associated with each user

was huge, as described earlier. The defendant category contained all attributes that

were associated with the reported user (the defendant). A typical attribute in this

category was the number of days the reported user had been on Stardoll.

Plaintiff. The plaintiff category contained exactly the same attributes as the

defendant category, but the considered user here was the user who wrote the report

(the plaintiff).

Report. Some attributes were related to the report itself rather than one of the

users. One example is the number of reports written in the reverse direction,

meaning the number of reports where the current plaintiff was the defendant and

the current defendant was the plaintiff.

All attributes are not specified in detail in this report since the list would be

long and it would be difficult to explain all attributes without going into details

about how Stardoll works and how the database is organized. The list would also

expose sensitive data. It is at the same time hard to specify, at a general level,

exactly how these attributes were chosen but some things can be said about the

creation of the list. All tables in the database were looked at in order to get an idea

of the type of information saved there. If each user only had one row, information

was extracted from that row. If instead each user had more than one row, the

number of rows was used. A user's favorite food, which can only be one, was

stored as one attribute. A user's favorite dolls on the other hand were saved only as

the number of such dolls.

Exceptions were made to the above description when information was not

believed to be fully captured. This was a subjective process and the information

provided by the domain experts in the previous section was taken into

consideration. The economical investment involved had, for example, been

thought to be of importance; hence several attributes looked at this aspect. The

most straight-forward approach was to simply save the amount of stardollars a user

had as one attribute, but this does not capture all aspects of this matter so three

additional attributes were used. The first of them was the total number of

stardollars invested, the second was the total number of stardollars bought and the

third was the number of stardollar purchases. All these were capturing slightly

42

different aspects of a user's behavior. The total investment is basically the value of

an account as it specifies how many stardollars has been spent on making it the

way it is. A user can either get stardollars by being an active user on the site and

winning different contests, or by purchasing. The second attribute specified how

much “real” money has been invested. The third attribute specified how many

times stardollars has been bought for “real” money.

Another exception to the simple rules outlined above was the number of album

comments. According to the rules above one attribute, the number of album

comments, would be associated with the example. However, album comments can

either be sent or received which gives two attributes: one for the number of sent

comments and one for the number of received comments. Another aspect not

captured by this simple representation is the number of unique users who have

received the sent comments. It may be important whether a user is talking to many

or to few other users.

4.6. Recovery of Data

In order to create the full list of attributes a lot of information needed to be

collected about the involved users. In some cases this was trivial, but in most cases

time complicated the process. The attributes calculated should match the value

they had when the report was written rather than what they were when this work

was done. When it comes to the amount of money for example the attribute used in

the examples should be the balance the user had when the report was written. This

can, and is likely to, be different from the user's current balance since the user

might have refilled the balance, earned money or bought items. In this particular

case the reconstruction is simple since all transactions are properly logged with a

timestamp attached to it. These logs made it easy to know exactly which

transactions had been performed at any given point in time. It was, in other words,

possible to know how much funds a user had when a certain abuse report was

written.

All changes to the database are not done as described above. Sometimes old

information is simply overwritten when a new value is available. Unfortunately the

old information gets lost and makes it impossible to make a perfect reconstruction,

but two remedies were used to cope with this problem. The first and simplest

method was to ignore it. This approach was for example used when it came to the

quick facts, which are short and simple questions with a number of predefined

answers that users fill in about themselves. The user answers these questions and

the answers will be showed on the user's profile page. Possible questions include

favorite food and favorite celebrity. These facts are not believed to be changed too

often and it was reasonable to ignore possible changes.

The second approach used for handling attributes that could not be perfectly

reconstructed was to try to interpolate [GWF02] an old value given the new value.

43

This was for example used with the starpoint rewarding system. The amount of

starpoints a user has is only stored as a number. When a user is being rewarded

with new points due to recent activity on Stardoll these new points are added to the

previous number without any logging. In this case linear interpolation was used to

estimate how many points a user had a certain day since the actual value can no be

recreated. Assume for example that a user has 100 starpoints twenty days after

registration. If these points were received at the same pace this will mean that the

user was rewarded five points a day. It is therefore assumed that the user had 50

starpoints ten days after registration and 75 starpoints after fifteen days, and so on.

This assumes that starpoints are rewarded at the same pace throughout time, which

is not a realistic assumption. How active a user is on the site, hence how many

starpoints that user will receive, is likely to change over time. It might be possible

to get a better estimate than this by studying usage patterns, but this was a

complicated process outside the scope of this work. Linear interpolation should be

accurate enough.

The above paragraphs describe updates and how they cause problems. Another

operation that also complicates reconstruction is when data is deleted entirely.

Luckily such operations are quite seldom used. Most of the time when it appears to

the user that content is deleted, for example when the user deletes a guestbook

entry, the actual content is still left in the database but it is flagged as deleted and

not shown to regular users. The Customer Service can still view this content which

can be important when following up on a potential abuse. Unfortunately some

content is not handled this way and is actually deleted. This is for example true for

the high score lists on the games available on Stardoll. If a user makes it to the

high score some other user is deleted from it.

A problem closely related to the one about reconstructing the data is

reconstructing related data. One attribute which might be important is how many

other abuse reports that have been filed against the same user. When looking at it

in retrospect it is easy to know how many similar reports that were written, but it is

not as trivial to know this when the classification would have been done. The most

straight-forward approach is to simply count how many similar reports with a

smaller timestamp are present. This will, however, not exactly emulate what will

happen when a report is to be classified. The classification will, as mentioned

earlier, not be made when the user is filing the report. Instead it will be run as a

batch job at regular intervals, probably once a day. This means that there might be

a delay between the filing of the report and the classification of it. In many cases,

such as how many starpoints the user has, this is not so important. A user is not

likely to change their behavior dramatically during just a few hours. However,

when it comes to some attributes, most importantly the number of similar reports

filed, this amount of time might be important. If the abuse is severe many reports

are likely to be written in a small amount of time. As an example, let us assume

44

that five reports are being filed shortly after each other. During classification these

reports will be handled during the same nightly batch and thus all have four as the

number of similar reports filed. It is desirable that this is also the case during

training. If the simplest approach described above would be used, the number of

similar reports would be 0, 1, 2, 3 and 4 respectively. One way of simulating a

more realistic amount for this value is to check how many reports that have been

filed before, say, one day after the actual report is filed.

Another attribute might be based on the quality of these related reports, but

relying on the status of reports written close in time to the report in question is

dangerous. These are all known now, but they would have been unknown when a

classification would have been made. There is a balance here between using as

much historical data as possible, and avoiding using data that would not be

available during actual classifications. One possible solution to the problem is to

avoid looking at the status of reports written after, say, one week before the report

in question was written. An exact time interval is hard to determine since this may

vary over time, but it should be the approximate waiting time for a report or

slightly longer.

4.7. Lack of Data

As shown above the preprocessing of the examples was a difficult and subjective

task. A further complication was that all data has not been available during this

process. Some of the tables in Stardoll's database are split into different shards7.

This data has not been available in the local database copy created for this task,

thus no attributes related to this data has been used. Unfortunately much

information is sharded making a substantial amount of data unavailable. Generally,

it can be said that the data available was metadata (e.g., the age of the user who

wrote the guestbook entry, the amount of Stardollars the user who wrote the report

has, etc) but not actual object (e.g., the guestbook entry in question).

The lack of reported objects was very noticeable. In the list above specifying

the four categories of attribute there was no category focusing on the actual object

that has been reported. One can easily see that this is a major drawback since the

reported object is exactly what the Customer Service Representative would look

at. The answer to the question whether a report is good or bad is the same as the

answer to the question if the reported object is really violating the rules, and the

answer to that is in the object itself. If a guestbook entry is said to contain bad

language, the answer to whether it does or not is in that very guestbook entry.

Another problem, except for the lack of reported objects, was that a lot of

useful data about users might exist in this missing data. One example is that the

7 Sharding is a way of splitting a large amount of data into smaller independent subsets.
This makes is possible to store these different subsets, called shards, on different
database servers. This can in turn improve performance. Sharding is also called database
partitioning. [SKS05]

45

user associations are sharded, hence unavailable. From this data attributes such as

the number of friends a user has and the number of times a user has been blocked

can be extracted. More complicated patterns can also be extracted from the user

association data. It might for example be helpful to consider the number of distinct

friend networks that have reported a user. Independent users reporting the same

user might suggest that the potential violation actually took place. This might of

course be the case even if the reports are filed from within the same friend network

but it is not uncommon that a user who is upset with another user tells all their

friends to report that user too. They believe that a user will be deleted if many

reports are filed against that specific user.

By not being able to look at the sharded data some measurements on how active

a user is have not been calculated. It is, as stated above, a problem not having

access to for example guestbook entries since this prevents examination of the

reported object in itself. However, guestbook entries in general might also give

away information about a user. The amount of guestbook entries sent, the amount

of entries saved, the amount of unique guestbooks written in, and so on might all

represent different parts of a user's behavior.

46

5. Training the Classifier

When the data is preprocessed and ready to be used the next step is to train the

classifier and create a model. Before this can be done the type of classification

algorithm to use, together with its parameters, must be decided. This section will

investigate these issues in order to try to find the best algorithm to use for the task

at hand.

5.1. Theoretical Aspects

Training a classifier is, once the preprocessing is done, in its simplest form very

easy. A computer system implementing a certain machine learning algorithm will

do the actual training once the data has been fed to it. The aspect that complicates

things is that different algorithms perform differently. In order to get a classifier

that is as accurate as possible several different algorithms have to be tested.

Another complicating factor is that many of the algorithms have different

parameters that can be tweaked. Comparing all possible algorithms with all

possible parameter values are seldom feasible so manual intervention is needed in

order to focus the search in the right direction. It is also possible that factors other

than accuracy affect the decision. Different algorithms can behave differently

when it comes to run time, memory consumption and the type of the produced

model. The model created by some algorithms are easily read and understood by

humans, while some are not.

The process is described here as something linear. The data is first

preprocessed, then a classifier is trained and finally the classifier is deployed and

used. In many situations this is not sufficient. It is possible that it during the

training phase becomes apparent that preprocessing should have been done in

another way. In that case it is necessary to go back to the previous step and redo

some of the work preformed there.

It is important to be able to determine a classifier's performance in order to

compare different classifiers and decide which is better. This might seem as a

trivial task, but in real applications it is sometimes harder than expected. The first

approach is to simply measure accuracy. To do this some data is put away before

the classifier is trained. The data put aside, the validation data, is also labeled so it

is possible to know the correct class for the examples in it. Once the classifier is

47

trained it is run on the validation data. After the run each of the examples in the

validation data will have two classes, one actual class and one estimated class. By

comparing these it is possible to see how big part of the examples that were

classified correctly. This value, which will be between 0 (i.e., 0%) and 1 (i.e.,

100%) is referred to as a classifier's estimated accuracy. The problem with this

value is that it is sometimes misleading since it disregards the different types of

mistakes a classifier can do. A classifier that has n classes, denoted c1...cn, to deal

with can produce n•n possible results. The actual class, a, is one of the n classes

available and the estimated class, e, is also one of them. A correct classification

has been done if a=e, that is if the actual class is the same as the estimated class.

The number of such possible correct classifications is n, hence the number of

incorrect possibilities is n(n-1). It is naturally the case that a correct classification

is better than an incorrect classification, but it is not always the case that all

incorrect classifications are equally bad. Given two classes, ci and cj where i≠j, it is

possible that incorrectly classifying an instance of ci as cj is worse than incorrectly

classifying an instance of cj as ci. This difference is not honored by the simple

accuracy metric and it can be valuable to also have another metrics. A concrete

example of an application where the difference between mistakes is noticeable is

spam filters for email. The two possible classes are “HAM”, for legitimate

messages, and “SPAM”. The system can make two correct classifications and two

incorrect classifications. The former are keeping ham and removing spam. The two

incorrect actions a spam filter can take are to either remove ham or keep spam.

Most people would probably argue that removing ham is much worse than keeping

spam. A kept spam can simply be removed manually while a removed ham means

loosing information that can be valuable.

The discovery that different errors have different effect can be useful in more

areas than just when it comes to measuring performance. It might be the case that

the classifier should be so that the total number of errors is increased if that makes

a certain type of error less likely. Some algorithms, including the decision tree

algorithm, can output a confidence level in addition to the actual class. The

resulting decision tree would give not just the class (e.g., “SPAM”), but instead a

class distribution (e.g., “60% SPAM, 40% HAM”). The interpretation of this

should be that the tree is 60% confident that the class is in fact SPAM. If different

types of errors were equally bad the natural thing to do would be to always use the

class that got the highest percentage. These errors are not equally severe and it is

reasonable to use another approach. The trick used here is to classify a report as

class c if the probability that it does belong to that class is equal to or above pc.

This can be a bit difficult when dealing with more than two classes, but it is rather

straight-forward in this particular case. In this case one class can be selected as the

preferred class and all examples that are assigned a probability larger than or equal

to p will be assigned that class. By assigning p the value 0.5 (i.e., 50%) the

48

standard behavior is mimicked.8 By using a value lower than 0.5 that particular

class will be favored. What value to use for p is sometimes difficult to determine.

Domain experts or potential users of the system might have to tune the parameters

so that the system produces the best possible trade-off. It is possible that this

parameter is changed during a classifier's lifetime. It is for example possible that

more faith is put in the classifier once it has been in place for a while and in that

case it is reasonable to adjust the parameter.

5.1.1. Large Data Volumes

One problem that can cause concern in a machine learning process is that the

available data is very large and difficult to handle. It is desirable to have much data

since it is what the algorithm needs and leaving out data can potentially degrade

the performance of the classifier. A certain pattern can not be found if the

attributes that make up the pattern are not present. Too much data on the other

hand does not pose any problem for most algorithms. The problems that do occur

are instead seen on a more practical level. Handling large amounts of data is, in

general, either time-consuming or resource-intensive.

It is possible that either time or resources limits the amount of data that can be

processed. The solution that can be used then is to reduce the amount of data in

one of two ways. The first way of reducing the amount of data that needs to be

processes is to decrease the number of examples used. The other way is to reduce

the size of each example by reducing the number of attributes per example. These

two methods will be described below.

Reducing the number of examples is a simple method. The idea is to reduce the

number of examples just so much that the time and resources needed reach an

acceptable level. Not much consideration must be taken when employing it. The

most important factor is that the data should be split in a stratified way so that the

subset of data used has a similar class distribution to the total amount of data. A

problem one can face when using this method is to know which subset to use. Say

for example that the algorithm should be fed with 25% of the available data. If the

data set is split in four there are four possible subsets to use. It is, furthermore,

possible to do the split in numerous different ways. One way to mitigate this is to

use a few different subsets and study the performance. If the performance is

similar across the tested subsets it is most likely not worth spending too much time

investigating different possibilities to create the subsets.

Reducing the number of attributes is a way of reducing the size of the

examples. The reduction of attributes must be performed in such a way that a

minimal amount of useful information is removed. A different way of putting it is

8 There is one difference between using the standard behavior and using the method
described above with p set to 0.5 and that is how example with exactly 50% probability
in both classes are handled. In the former case the behavior is undefined but in the latter
it is not.

49

that the remaining attributes should be the most influential ones. One way of

achieving this is to create a decision tree and look at the most important attributes

in that tree. Those attributes could then be removed from the dataset and a new

tree can be created. By iterating this process a few times it is possible to extract the

most important and influential attributes from the dataset, and doing what is

needed in order to reduce the number of attributes without loosing too much

information. The most important attributes in a tree are found by looking at the

attributes near the root of the tree. The root attribute is the most influential

attribute since it was chosen first and it is used on all examples to decide which

path to follow. The next level of attributes is also important since they were the

second choice in their respective branch, but they are not quite as important as the

root attribute. The attributes become less influential the further down in the tree

they appear.

There is a trade-off between the number of attributes and the number of

examples. Reducing one of them too aggressively is likely to harm the process

more than it helps it. The machine learning algorithm must both have enough

different examples to look at to be able to spot similarities and have enough

attributes so that the similarities are actually in the data. It is not obvious how a

balance should be found between these.

5.1.2. Ensemble Methods

A single classifier can in many cases produce an acceptable performance but in

some cases it does not. One method for improving the result is to train multiple

classifiers and let them work together. The idea is that different classifiers might

be good at representing different aspects of the data and a group of them might as a

whole be able to outperform each of them separately. This is not too different from

when a group of human experts are consulted rather than just a single one of them.

Methods that combine different classifiers in this way are referred to as ensemble,

or committee, methods. [Oza06]

Perhaps the simplest method for combining different classifiers is to train a few

of them, say 10, and then let each of them classify new instances independently.

The final outcome will be the most common output for the classifiers. It would be

like the classifiers voted on the outcome and the majority decides. One example

might, for example, get classified as class A by seven classifiers and class B by the

remaining three. The final verdict for this example would then be that it belongs to

class A. Worth pointing out is that the exact same dataset can not be used for

training all classifiers since this would generate the same classifier.

Bagging and boosting, which will be explained below, are two common

ensemble methods.

Bagging. Bagging, or bootstrap aggregating, is based on the basics outline

above. A few different classifiers will be created during training and a simple

50

majority vote will be conducted among them during classification. The key to the

bagging algorithm is how the different datasets are used to create the different

classifiers are assembled. It would not, as stated above, be fruitful to use the same

set of data to create all classifiers since this would yield an ensemble where all

members would be identical. Bagging solves this by creating different datasets

with the help of sampling with replacement. This means that examples will be

selected randomly from the original dataset when forming a training dataset. Since

replacement is used the same element can be selected multiple times and some

element may not be chosen at all. This makes it possible to use one dataset to

create several different datasets. [Bre94]

Boosting. Boosting takes advantage of the fact that different classifiers can

complement each other. One classifier might be very good at handling a certain

portion of the data but not the rest, hence it is sensible to complement it with a

classifier that can handle the rest, rather than just another one that can classify the

same portion. Boosting uses iterations in order to accomplish this. A classifier is

created in the first iteration. The examples that are incorrectly classified by this

classifier are given extra weight in the second iteration. This process is continued

for a fixed number of iterations, at the end of each weights are modified to favor

examples that have been misclassified. [WF05]

Both bagging and boosting are so-called meta classifiers, meaning that neither

of them are providing any actual classification logic. This means that bagging and

boosting requires another algorithm to do the actual classification, which it takes

as an input parameter. The type of algorithm used does not matter much. All types

of machine learning algorithms that can output a class can be used.

Bagging and boosting are not the only available options for having multiple

classifiers working together. Recall that the different classifiers all voted and the

majority vote won. This is not the only way to utilize these classifiers and here, as

well as in the example with a group of human experts, different protocols can be

used. In some situations the decisions are so important that a consensus is needed

in order to make the decision in question. A variant of this is that a decision in one

direction is more fatal or unfortunate than a decision in the other direction. In

situations like this it might be appropriate to only make such decision if all voters

agree. Put differently this means that a positive decision will not be made if one

expert, or in this case classifier, is against it. This means that all classifiers are

given the right to veto the decision in question. Several other variants are also

possible, including assigning weights to the different classifiers. [TKS06]

5.2. Weka

Weka9 is a free, open source tool that can be used for a variety of machine learning

and data mining tasks. Weka was therefore a good tool to use in this project. Weka

9 Found at <http://www.cs.waikato.ac.nz/ml/weka/>.

51

Explorer, which is part of the tool, is a program that lets the user load data from a

file, an URL or a database, and then builds a model based on that data. Once the

data is loaded some preprocessing can be done, but since the data at hand had

already been preprocessed there was no need to use Weka's functionality for that.

After this an algorithm can be chosen from the long list of algorithms available.

Weka makes it easy to try different algorithms and compare the results. In addition

to selecting the algorithm Weka also makes it possible to change parameters to

those algorithms. This makes it easy to not only compare algorithms but also

different parameter settings for those algorithms.

The version of Weka used here was 3.4.11 which was downloaded 2007-09-18.

5.3. Choosing Classification Algorithm

Classification algorithms can take many forms and there is a wide range of them

available. Weka, for example, comes with almost 50 algorithms ready to be used.

Analyzing and comparing all those algorithms is a demanding task beyond the

scope of this thesis work. Another issue complicating this further is that most of

these algorithms can be fine tuned by changing certain parameters that affect the

process. A comparison was nonetheless needed in order to find a good algorithm to

work with. The approach used was to let a few selected algorithms work with their

default parameters. The algorithm that had the best result under these

circumstances was fine tuned in order to find the parameters to use.

Five different algorithms where used. ZeroR is an algorithm that outputs a

model that always returns the same class. The class selected is the majority class,

since this will be correct in most cases. This algorithm is not of any real use. In

Stardoll's case it would simply remove all reports. The reason for having it in this

list at all was because it is good to compare more sophisticated algorithms with it,

since it in some sense represents the most unsophisticated way to act. NaiveBayes

and DecisionTable10 have informative names and implement Naïve Bayes and

Decision Table respectively. These algorithms have not been described earlier and

it is outside the scope of this thesis to do so. J4811 is one implementation of a

decision tree algorithm, namely the C4.5 algorithm. Ridor12 uses rules and

exceptions to find an appropriate model.

Since both training and testing are resource-intense tasks, requiring both time

and memory, the different algorithms could not be given the entire amount of data.

Instead 5% were randomly chosen, in a stratified way, among the entire set of test

data available. Out of these, 80% were used for training the classifier while the

remaining 20% were used to validate it. The same sets were used for all

algorithms. The result of the experiment can be found in Table 10. Instead of

10 Default parameters are “-X 1 -S 5”.
11 Default parameters are “-C 0.25 -M 2”.
12 Default parameters are “-F 3 -S 1 -N 2.0”.

52

showing the exact number of reports classified either way (i.e., a confusion matrix)

four more general measures are shown. These measures will be explained below.

Table 10: Comparison of classification algorithms.

Algorithm Accuracy Percentage bad

reports removed

Percentage good

reports removed

Score

ZeroR 62% 100% 100% 1.13

NaiveBayes 65% 86% 68% 0.86

DecisionTable 68% 87% 62% 0.78

J48 67% 83% 59% 0.77

Ridor 66% 97% 86% 0.99

The first measure is Accuracy which simply shows the percentage correct

classifications. It was shown earlier that this metric has drawbacks and an example

can help show this once again. Consider for example a classifier that removes all

reports without considering any attribute at all, such as the ZeroR classifier does.

This classifier classifies 61% of all reports correctly since this is how many reports

that are bad. Now consider instead a classifier that removes one third of all bad

reports without removing one single good report. This classifier would correctly

classify all good reports and one third of the bad reports, which would translate

into 59% correctly classified reports.13 If only the accuracy is considered the

former of these two classifiers would look slightly better than the second, but in

reality the latter would have an enormous value while the latter would be

practically worthless.

In order to give a better view of how classifiers perform the two errors are

separated and the two rows Percentage bad reports removed and Percentage good

reports removed are added. The former indicates how much good and helpful work

the classifier does by removed bad reports. The desired number here is 100%. The

latter on the other hand indicated how much problem the algorithm causes by

removing good reports. A perfect classifier would not make any mistakes and the

desired number is 0%. These two numbers give a good picture about how the

classifier performs. The downside of using these metrics is that it is hard to

compare two classifiers if two metrics have to be considered at once. Say for

example that one classifier has a higher value on both these metrics than another

classifier. On one hand this would be preferable since more bad reports are

removed, but on the other hand it would be undesirable since less good reports are

removed. One way of making this easier is to use the metric Score which tries to

incorporate all this in one single number making comparisons easier. This metric is

not an established method for doing evaluations of this type, but it should give a

13 The bad reports consist of 61% of all reports so one third of them would mean
approximately 20%. The good reports consist of 39%. If these two are added together
the accuracy in this case equals 59%.

53

hint about how the algorithms work. It should be good enough to give a starting

point but all decisions should consider the two more elaborate metrics too. Score

builds on the function for calculating the error rate for a classifier but it weights

errors differently. The error rate is simply calculated by dividing the number of

errors by the number of attempts (called n), in this case examples. The number of

errors is in turn calculated by adding together the number of bad reports being

classified as good (called ebg) and good reports being classified as bad (called egb).

The extension here adds a weight (called w) to the latter of these. The aim of the

weight is to make errors of that type worse (or better) than errors of the other type.

The exact difference between them can be tuned by increasing or decreasing this

number. It virtually says how much more an error of one type is compared to an

error of the other type. The exact form of the algorithm is shown in Equation 1.

One issue that still remains is what value to choose for w. The Customer

Service was consulted in order to get an estimate but no exact value could be

given. It appears that a reasonable value is somewhere around three and there is no

need to make an elaborate study in order to find a perfect value for this. The most

important thing is that it is approximately right and that the other metrics are

consulted before decisions are made.

Equation 1: Formula for calculating the score metrics. ebg denotes the number of bad
reports erroneous classified as good, egb the number of good reports erroneous classified
as bad, w a custom weight and n the total number of classifications.

The original class distribution, which says that 39% are good and 61% bad, is

not necessary to keep in mind. The two most important figures presented in the

table above are percentages based on the number of reports in each category. If the

presented numbers would be absolute the situation would be different and the

original class distribution would be relevant. The reason for this is that the two

classes are not equally likely. Randomly removing reports would also remove

more bad than good reports when it comes to absolute numbers, simply because

bad reports are more common than good reports. This is not the case when

considering percentage numbers based on the number of reports in each class.

As we can see in Table 10 the most promising algorithms were DecisionTable

and J48. Except for the performance itself there were also other factors worth

considering. One such factor was the readability. A decision tree is very readable

as we have seen. This can be important for checking the model and understanding

it. Because of this and the relatively good performance shown the J48 decision tree

algorithm was chosen.14 It is worth stating that this is not necessarily the algorithm

14 This probably was no surprise since that was the only type of machine learning
algorithm described in the Background section.

54

ebgegbw

n

that would come out as a winner from a more extensive comparison. The rule-

based algorithms, for example, appeared to be performing well under tests, but

they also appear to be more demanding when it came to time and memory. These

algorithms could, on the equipment available, only run on very small subsets of the

data, which was unfortunate since it did not give comparable results.

5.4. Choosing Parameters

The algorithm that was chosen, decision tree, has the ability to output a certainty

level. This means that it is possible to favor one type of mistake. The exact value

for this uncertainty level does not have to be decided at this point. The value

should be kept as a setting that the Customer Service or the Management can tune

so that the classifier is showing an acceptable trade-off. The reason this issue is

brought up here at all is that it might affect the tuning of the algorithm. Small

variations in this parameter are not likely to affect the behavior and performance

drastically but large changes might. In other words it is good to establish an

approximate value here. One reasonable value might be 0.25 (i.e., 25%), meaning

that if there is one quarter of a chance that the report is good, it should be saved.

This value will be used when testing how classifiers perform. In reality this value

does not have to be exactly this. The important thing is, as stated above, that it is

within the same range.

The parameters available for the J48 algorithm are seen in Table 11. Some of

these parameters are boolean, meaning that they will either be “on” or “off”, while

some others have numeric values. Yet others of them depend on some other

parameter. It is for example possible that one parameter decides whether a certain

method should be used or not and one or more other parameter specify specific

behavior of that method. If that method is not used at all there is no reason to tune

specific behavior of it.

Some of these parameters can be dealt with right away, most notably debug and

saveInstanceData since they do not affect the actual process. Another parameter

that will not be considered is seed since the way this particularly data is

randomized should not be of importance when working with another set of data.

The parameter unpruned will not be considered either since pruning, a way to

make trees more general by removing spurious branches, is vital when data is

noisy. The same goes for subtreeRaising, since subtree raising is a form of

advanced pruning. The option useLaplace makes probabilities a little “safer”.

When this is turned off it is possible that a certain report would be classified as

either 100% bad or 100% good, which might be inappropriate in some situations.

Dividing by zero is, for example, very different from dividing with a small nonzero

value. This is not of importance here so useLaplace will be turned off. The last

parameter to be left alone is binarySplits. By not using binary splits the tree might

get wider, but that should not cause any concern in this case.

55

Table 11: Parameters available for the J48 algorithm. This table is a verbatim copy from
the corresponding help section within Weka.

Parameter Description

binarySplits Whether to use binary splits on nominal attributes

when building the trees.

confidenceFactor The confidence factor used for pruning (smaller

values incur more pruning).

debug If set to true, classifier may output additional info to

the console.

minNumObj The minimum number of instances per leaf.

numFolds Determines the amount of data used for reduced-error

pruning. One fold is used for pruning, the rest for

growing the tree.

reducedErrorPruning Whether reduced-error pruning is used instead of

C4.5 pruning.

saveInstanceData Whether to save the training data for visualization.

seed The seed used for randomizing the data when

reduced-error pruning is used.

subtreeRaising Whether to consider the subtree raising operation

when pruning.

unpruned Whether pruning is performed.

useLaplace Whether counts at leaves are smoothed based on

Laplace.

The remaining four attributes are confidenceFactor, minNumObj, numFolds

and reducedErrorPruning. The first parameter that will be dealt with is

reducedErrorPruning which specifies what type of pruning will be used. C4.5

pruning, which is used if this parameter is off, is the default pruning used, but it

can be changed to a pruning technique called reduced-error pruning. These two

pruning techniques were used one time each, with no other parameters altered, and

the result can be seen in Table 12. They are performing approximately the same,

but the tree produced by C4.5 pruning has fewer leaves. The number of leaves a

tree has is a way of measuring the complexity of the tree. It is desirable to have

simple and small trees since these are easier to read and understand. They will also

be faster since less computation are needed and it is also likely that fewer

attributes are used which might mean that less attributes have to be computed in

the first place. A large tree also runs the risk of being overfitted. Since C4.5

pruning performed well and had few leaves it was chosen. This also means that the

value for numFolds will be irrelevant.

56

Table 12: Comparison of pruning techniques.

Pruning

technique

Number of

leaves

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

Reduced-error

pruning

12828 56% 45% 27% 0.65

C4.5 6764 59% 52% 31% 0.65

The two remaining parameters, confidenceFactor and minNumObj, are both

numeric. The best values for these were found through an experiment. A set of

possible values were listed for each of the parameters and then all possible

combinations were tested. Knowing which parameters to include in the list of

possible values was hard. If the list would become too large the number of

experiments would be too large, and if the list would become too short it was

possible that no a good value would be found. A compromise between these two

issues was using 0.15, 0.20, 0.25, 0.30 and 0.35 as possible values for

confidenceFactor and 2, 5, 10 and 15 as possible values for minNumObj (default

values are written in bold). The result of these tests is seen in Table 13.

The most promising parameter values appear to be 0.30 for confidenceFactor

and 15 for minNumObj (marked in bold). This combination has the lowest score

among all the tested combinations, but it has been stated that the score should only

be used as a guideline so all the combinations should be compared against each

other. One reasonable method for doing so is to start with the assumed winner and

compare that to all the other classifiers. If no other classifier is performing better,

the assumed winner is in fact the winner. There is no point in considering the

classifiers that only removed a few reports, or not any of them, since choosing one

of those would defeat the whole purpose of filtering reports. The selected

combination is performing better than the other remaining classifier with the same

minNumObj setting since they are both performing equally much good work, but

the latter makes more mistakes. The estimated winner is also performing better

than the two remaining classifiers with minNumObj set to 10. The latter is

performing one percentage point more good work, but it makes two percentage

points more mistakes, which makes the improvements less than the increased

downsides. Comparing all the classifiers in this way is a tedious task, but for all of

them the same connection will hold. The increased good work is less than the

increased mistakes.

The dataset used here is the same as the one used in the previous section,

except that its size has been doubled. The data here consists of 10% of the entire

training data available.

57

Table 13: Comparison of different values for numeric attributes.

confidence-

Factor

min-

Num-

Obj

Number

of leaves

Accuracy Percentage

bad reports

removed

Percentage

good

reports

removed

Score

0.35 2 11188 60% 58% 38% 0.71

0.30 2 10031 59% 56% 36% 0.69

0.25 2 6764 59% 52% 31% 0.65

0.20 2 2786 58% 47% 26% 0.63

0.15 2 28 39% 0% 0% 0.61

0.35 5 5548 59% 54% 33% 0.67

0.30 5 2881 58% 47% 25% 0.62

0.25 5 915 58% 43% 21% 0.59

0.20 5 36 39% 0% 0% 0.61

0.15 5 29 39% 0% 0% 0.61

0.35 10 914 57% 43% 20% 0.58

0.30 10 69 57% 43% 20% 0.58

0.25 10 69 39% 0% 0% 0.61

0.20 10 68 39% 0% 0% 0.61

0.15 10 51 39% 0% 0% 0.61

0.35 15 81 57% 42% 19% 0.58

0.30 15 63 57% 42% 18% 0.57

0.25 15 63 39% 0% 0% 0.61

0.20 15 62 39% 0% 0% 0.61

0.15 15 50 39% 0% 0% 0.61

5.5. Finding the Most Suitable Subset

Creating a classifier requires a lot of memory and the machine used was not able to

process all of the available data at once, instead only about 10% of the data could

be processed given the resources at hand. This was problematic since important

information might be available in the remaining 90% causing the classifier to act

worse than it could. Another issue was that the classifier that was created would be

different depending of which 10% of the dataset that was used. In order to find the

best one other experiments had to be done. The data was randomly, but in a

stratified way, divided into ten subsets. These subsets were used to create ten

classifiers and each of them classified the rest of the data. In other words one

58

classifier was trained using subset one and tested on subset two to ten. The next

classifier was trained using subset two and tested on subset one and three to ten.

The same pattern was followed for all ten classifiers. The result of the ten runs can

be seen in Table 14.

Table 14: Comparison of classifiers built on different subsets of the data (uncertainty
setting 25%).

Subset Number of

leaves

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1 236 57% 42% 18% 0.57

2 1535 57% 43% 19% 0.58

3 38 57% 41% 18% 0.56

4 55 57% 41% 18% 0.56

5 845 57% 42% 19% 0.57

6 47 57% 41% 18% 0.56

7 1497 58% 43% 19% 0.58

8 1272 57% 42% 19% 0.57

9 723 57% 42% 18% 0.57

10 45 49% 22% 7% 0.56

The first nine classifiers produced similar results, where a little over 40% of all

bad reports were removed and a little fewer than 20% of all good reports were

removed. It is also interesting to note that the size of the trees varied a lot, while

the result was approximately the same. One subset, the tenth, looks different. It

had notably smaller percentages in both the columns. That classifier rather

classified a report as good than bad.

It is reasonable to get suspicious when nine values are very similar and one

differs notably, but it is also worth noting that the ratio does not vary equally

much. The tenth classifier was neither substantially better nor substantially worse

than the other nine; it just had another way of assigning the probabilities. It was,

however, worth changing the uncertainty setting in order to make sure that there

was nothing fundamentally different between the first nine classifiers and the

tenth. The exact amounts of bad and good reports removed were decided by the

way uncertain classifications were handled. Please recall that 25% were chosen

fairly randomly. Changing this setting slightly would make the result look different

and perhaps the tenth classifier would not differ as much. A first attempt at

showing this was to reduce the level used to 20%. This means that the probability

for a report to be good must be less than 20% in order for that report to be flagged

59

for deletion. Except for this small modification the same settings as above were

used and the experiment was rerun. The result can be seen in Table 15.

Table 15: Comparison of classifiers built on different subsets of the data (uncertainty
setting 20%).

Subset Number of

leaves

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1 236 44% 9% 3% 0.58

2 1535 42% 8% 3% 0.60

3 38 49% 20% 6% 0.56

4 55 43% 7% 2% 0.59

5 845 43% 8% 3% 0.60

6 47 42% 7% 2% 0.59

7 1497 49% 21% 8% 0.57

8 1272 43% 8% 3% 0.60

9 723 42% 7% 3% 0.60

10 45 49% 20% 6% 0.56

The new experiment also showed some difference between different classifiers.

The third, seventh and tenth classifiers had comparable results with small internal

differences. The same was true for the remaining seven classifiers, but the two

different sets differed notably. Given this new information there should not be any

reason to suspect that the tenth classifier was substantially different from the rest.

In this experiment it produced the same results as the third classifier, even though

these two differed when the original uncertainty setting was used.

One of the classifiers seen here had to be selected. There was no need to use the

original uncertainty setting so any of the results in these two tables could be

selected, which gave a total of twenty possibilities. The first nine classifiers

removed a fairly large amount of good reports with the original uncertainty setting.

The Customer Service was consulted about this but they were not able to give an

exact answer to how big the acceptable loss of good reports is. They could,

however, say that the numbers shown here, with numbers almost reaching 20%, is

too big. This disqualified the first nine classifiers with the first uncertainty setting.

Another large set of classifiers that were less attractive was the ones that removed

very few reports with the second uncertainty setting. Putting a system like this in

place requires a bit of work and some changes to the existing administrative

interface. For this to be worthwhile the potential of work saved has to be more

substantial. Only three possibilities remained for the latter uncertainty setting. Two

of these, classifier three and ten, were producing the same results, which is better

60

than the result produced by classifier seven. Classifier seven removed one

percentage point more bad reports, but at the same time it removed two percentage

points more good reports. The remaining options were now classifier ten with the

first uncertainty setting and classifier three and ten with the second uncertainty

setting. Out of these the tenth classifier with the first uncertainty setting was

chosen. This combination of classifier and uncertainty setting was removing two

percentage points more bad reports while only removing one percentage point

more good reports. Another appealing characteristic of the tenth classifier is that

the produced tree was fairly small. The seventh classifier for example had a

substantially more complex tree.

The way classifiers have been compared here is not perfectly fair. It is possible

that some other setting, say 22.75%, would make one of the other classifiers to

come out as the winner. The fairest method for doing this would be to determine

how big the acceptable loss of good reports is. There is no exact number specified

for this now, but assume it is 10%. When this level is established each classifier

would be allowed to make this many mistakes and the uncertainty setting would be

calculated based on that. Ideally this would mean that all classifiers, while having

different uncertainty settings, would have the same amount of incorrectly removed

good reports. The best classifier would then be easy to spot by simply looking at

the one with the highest amount of deletions for bad reports. One drawback with

this method is that it is not sure that all classifiers would be able to reach a

removal rate of exactly 10% for good reports. In fact, it is not likely that any of

them would reach exactly 10%. This must be handled in some way and one method

is to simply aim for 10% and if that is not possible the closest possible smaller

value (e.g., 9.5%) is used. Unfortunately this method of making a more fair

comparison requires a software tool in order to be performed efficiently. Writing

such tool would require time and it can be questioned if it would be worthwhile.

By looking at how the classifiers have behaved, none of them seem to differentiate

much. Because of this it was decided that writing the needed tool was not worth

the effort and the time could be used in a better way.

One fully functioning classifier had at this point been created. It removed 22%

of all bad reports but in the process of doing so 7% of all good reports were

removed too. These numbers were far from the wanted numbers, which would be

100% and 0% respectively. Some approaches to improving these numbers were

tried and these will be explained in the following sections.

5.6. Favoring Memory Instead of Time

The above classifier was created by using a subset of the available data instead of

the entire dataset. The reason for this was that Weka uses a large amount of

memory which sets a limit for how much data that can be process. The reason

Weka uses so much memory is because it does a fair amount of optimizations

61

when it comes to time, resulting in short run-times. In some situations the run-time

can be important, but this is not really the case here. It would certainly be worth

waiting a while longer if it would result in a more accurate classifier. Focus was

put on the inner workings of Weka in order to see if the optimization bias could be

moved from time to memory. Since Weka is open source, it is possible for

everyone interested to modify the program to their needs. After some research this

idea was dropped for two reasons. First, the memory requirements would have

needed to be changed fairly much. Only 10% of the data could be run with the

unmodified version so it was reasonable to expect much work in order for this to

work. Second, the most promising lead that came up on how to optimize Weka for

memory was to change how database interaction works. Weka traditionally reads

the contents of a database into memory at first and then accesses the data from

memory each time it needs the data. Having all data cached in memory is not

necessary when creating decision trees since some information will never be used

more than once, meaning that it is not needed after first use, and so on.

Unfortunately it was not considered feasible to modify the memory model. The

reason for this was that Weka is built in a way which lets it get input from several

sources, including plain text files. The input is then transformed into objects in

memory and all processing is done with the help of these objects. Rebuilding this

system in order to keep the connection between objects in memory and database

tables, in order to use lazy loading for example, was deemed too hard and too

risky.

A second approach of solving this problem was to write a new program for

creating decision trees. This program would be able to use a completely different

memory model than Weka by, instead of loading the entire dataset into memory,

utilize the fact that the dataset was already in a database system competent of

doing computations. One common operation when constructing decision trees is to

calculate the class distribution (for some subset of the data). Weka practically

solves this by looping through its in-memory objects and calculating the

distribution by looking at the class on these objects.15 An alternative approach,

which could be used by this new program, is to construct the appropriate SQL

statements for calculating this and then let the database system, which already

manages all data, do the computation itself.16 Similar solutions can be done to

other operations needed when constructing a decision tree.

The new program, called DecisionTreeCreator, uses very little memory. It only

handles the actual logic and lets the database system handle the data. It might be

worth stressing that the actual data never leaves the database system. The only

thing that is transmitted over the network, if DecisionTreeCreator and the database

15 This is actually a simplification. Weka uses all sorts of tricks in order to improve
performance and in reality the in-memory objects are not used this naïvely.

16 The SQL statement for doing this could be as simple as
SELECT class, COUNT(*) FROM SomeData GROUP BY class;

62

system are running on different hosts, is data in aggregated form. This might

reduce network load, but this is not guaranteed. The number of requests to the

database system can be large and even if each response is small, the total amount

of data can be fairly large. The fact that raw data never leaves the database system

might also be worth considering from a security perspective. While the client

computer, the one running DecisionTreeCreator, needs less resources, the load on

the database system may increase. The database system will have to perform many

calculations during an extended period with DecisionTreeCreator. When using

Weka the database system will only be affected in the beginning. It is hard to state

anything definitive about load on the network and on the database system. What

has been mentioned here should hold in the general case, but it is possible to find

extreme cases when in does not. If there is a huge amount of data but a very simple

pattern among them, transmitting all data would be costly while doing the few

needed computations in the database system would be cheap.

DecisionTreeCreator works by building the tree recursively. The process is

started by looking at all attributes and trying to find the most suitable attribute to

use. This process is orchestrated by the program, but most computations are done

in the database system. When the most suitable attribute has been found the

process is repeated on each of the subsets created. This is handled by building up

database commands and passing them along, making them more and more

restrictive at each node. Somewhat simplified this is the same as adding a test to

the WHERE clause of the SQL statement at each node in the tree.

The goal of DecisionTreeCreator was to favor memory instead of time which if

successful would make it possible to run the entire amount of data available

instead of just using a subset. The downside of this was that it would take longer

time. Unfortunately it turned out during testing of an early prototype that the time

consumption increased more than expected. In a way it can be said that too much

weight was put on reducing memory and that this was taken to an extreme. One

mitigation to this was to start with this memory efficient program and do time

optimizations on that. One natural such optimization was to move some of the

calculations back from the database system to the client program. It turned out that

the computation for numeric attributes was very time consuming, making it a

perfect candidate for optimization. Categorical, or nominal, values are easy to split

since there is a natural way of doing it. This is not the case with numeric attributes

which can be split in a variety of different ways, making the computations more

extensive and costly. These computations can, however, be made fairly efficient if

written cleverly. The computations were made even more efficient by reading all

the numerical values from the database and saving them in memory. This reduced

time consumption drastically for processing numerical attributes and a notable

speed-up could be seen in the program as a whole. Worth pointing out here is that

this is a step away from the original design decisions. This means that raw data,

63

not just aggregated data, was transferred from the database system to the client,

with all implications that follows from that. One such implication is that the client

no longer was able to handle an arbitrary large dataset. In the original version

where all computations were made in the database system, the client was

practically independent of the size of the dataset. This change modified that

statement a bit, but DecisionTreeCreator was still able to handle large amounts of

data. The limitation was that all numeric values for one attribute must fit in an

array in memory.

Even though the improvement from the first optimization was large the

program was still too slow. Before the program was developed any further it was

tested by timing how long it took to build a classifier on different subsets of the

dataset. The results were then used to estimate how long it would take to run the

program on the entire dataset. Table 16 shows the result of running the program

three times with different number of examples, but except for that in the same

environment with the same parameters. Linear regression was used in order to find

an estimate for the time needed to run the program on the entire data set. The least-

square criterion [GWF02] was used to fit a line through the available data points

and this line was then used in order to make a prediction. The estimate was that the

run-time would be little over 15 days. This was a very long time and there was also

an associated risk with running a program during such a long period of time.

Power failures, network problems and reboots could abort the computations and

loosing days or weeks of valuable time. Matters get even worse when considering

that the run-time might not be linear as assumed above. The time needed to build a

tree depends on how easily the data can be categorized and this might very well

increase with an increased number of examples. The most important thing is an

approximate value and the one stated above should be accurate enough, but it

should be noted as an extra risk that the run-time might not be exact.

Table 16: Run-time measured during initial testing of DecisionTreeCreator.

Number of Examples Time (minutes)

100 3

500 18

1000 44

The estimated time requirement for running DecisionTreeCreator on the entire

dataset was longer than expected. It was unfortunately so long that it was

considered unfeasible and also, as mentioned above, very risky. This had the

implication that the development of the program was aborted.

64

5.7. Increasing Memory

The original problem was that Weka had too little memory available in order to

process the entire amount of data available. The solutions tried above were first to

modify Weka to use less memory and after that to build a new program for

building the classifier. There was also another possibility and that was to increase

the amount of available memory. In order to get an estimate for the amount of

memory needed a similar test as the one above was conducted. The memory

requirement was checked for a few runs and the result can be seen in Table 17.

Table 17: Memory usage for Weka.

Number of Examples Memory (Mb)

1000 20

10000 110

30000 310

These numbers seems to follow a linear pattern very accurately. This is also

reasonable when considering how memory is used. The examples are read from the

database and saved in memory. This is not affected by other parameters, such as

the complexity in patterns, the same way the run-time might be. The estimated

amount of memory required to run the entire dataset turns out to be a little less

than 5 Gb.

The memory required is large and not something found in the regular

workstation today, but it is still not unreasonable. Most servers at Stardoll have 8

Gb memory which means that the program would be able to process all data if it

could be run on one of those. Efforts were made in order to make this happen and

it looked promising since new servers were delivered at the time. These servers

were not yet in use and using one of them for this purpose would not affect or

degrade any running services. Unfortunately it turned out that it was not possible

to use a server for this work which meant that this path also led to a dead-end.

5.8. Creating a Tree Based on Fewer Attributes

The first method for dealing with the limited amount of memory was to reduce the

number of examples. Another possible method mentioned earlier was to reduce the

number of attributes. The approach that was used here aimed at a middle way

where attributes were removed, but not to the extent where all examples could fit

in memory and be processed. Finding a reasonable trade-off was difficult. The

approach used was to assume a reasonable value and see the outcome of that

attempt. If successful more tweaking can be done.

Reducing the number of attributes was done by iteratively creating decision

trees and removing the most important attributes. The randomized 10% of the data,

65

which was used before to find the most suitable parameters for the decision tree

algorithm, was reused for this process. The attribute used in the root node together

with the attributes found in the subsequent two levels were extracted. The first

iteration extracted seven attributes. The process continued for another six

iterations after which a total of 38 attributes had been extracted. This should be an

appropriate value to use in the first run.

The attributes extracted, the ones thought to be the most important and

influential, were combined to form a new dataset. This dataset was used to build a

new decision tree. Since 10% of the original dataset, with approximately 200

attributes, could be processed it is reasonable to assume that somewhere around

50% should be processable in the new dataset, with approximately 40 attributes.

Unfortunately testing showed that this was not really the case and the processable

amount of data had to be reduced to 40%. The total amount of data was split into

three pieces each containing 40% of the data. The first subset contained the first

40%, the second the middle 40% and the third the last 40%. Naturally an overlap

was created and the second subset overlapped the first by 10% and the third

equally much. When the split was done, a test similar to the one done when

creating the first classifier was performed. A decision tree was created with one

subset of the data and then that tree was used to classify the other subsets. The

parameters that were used when creating the first classifier were used again during

the creation of this classifier. Uncertain reports were also handled in the same way,

which means that only report with a probability of less than 25% of being good

were flagged for removal. The result of these tests can be seen in Table 18.

Table 18: Result of classifiers built on fewer attributes (uncertainty setting 25%).

Subset Number of

leaves

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1 672 58% 43% 19% 0.56

2 1256 57% 42% 18% 0.57

3 1276 58% 44% 19% 0.57

A fairly large part of all good reports were removed by all classifiers with the

settings above. It is, as mentioned earlier, unacceptable to almost loose one fifth of

all good reports written and hence none of the classifiers above showed a

promising result. In order to compensate for this the process for handling with

uncertain reports could be modified slightly the same way it was modified when

the first classifier was produced. The setting used above, 25%, was reduced to

20%. In clear text this means that a report was not removed if the probability that it

was good was 20% or more. All other settings were kept as they were above. The

result is shown in Table 19.

66

Table 19: Result of classifiers built on fewer attributes (uncertainty setting 20%).

Subset Number of

leaves

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1 672 49% 20% 6% 0.57

2 1256 49% 20% 7% 0.57

3 1276 49% 20% 7% 0.57

The figures presented this time are more similar to the ones seen when training

the classifier using all attributes and the losses of good reports are down to more

acceptable levels. The best result here, produced by the first classifier, is the same

as the already selected classifier produces with the same uncertainty setting. The

largest difference between them is that the classifier produced here has many more

leaves. A smaller tree is easier to read and understand and it will also be faster to

process, hence there is no reason to exchange the already created classifier for this

classifier.

5.9. Bagging and Boosting

Bagging and boosting are methods for improving performance by combining

several different classifiers. One downside of these ensemble methods is that they

require a lot of memory, a resource that was already running low. When all

attributes were present these ensemble methods was only able to run on a small

amount of the data. One solution to this problem was to use the dataset with the

reduced number of attributes. Testing showed that approximately 10% of the data

could be processed when the number of attributes had been reduced to 38.

Two different classification algorithms were used in the experiment performed.

The first was DecisionStump, which is a simplified decision tree algorithm. It

builds trees that are only one level deep and the algorithm is especially constructed

for being used with this sort of meta classifier. The second algorithm that was used

was the decision tree algorithm used above, J48. This algorithm was used twice

with different parameters. First it was used with the standard parameters and

second it was used with the parameters that were found to be optimal in Section

5.4 on page 55. These three combinations were used in conjunction with both

bagging and boosting and the result is shown in Table 20. The bagging

implementation used was Weka's Bagging17 and the boosting implementation was

AdaBoost.M18, also available in Weka. The default parameters have been used for

both these algorithms, including the number of iterations which defaulted to 10 for

both. The result of running the J48 decision tree algorithm without bagging or

boosting is also shown in the table for comparison.

17 Default parameters are “-P 100 -S 1 -I 10”.
18 Default parameters are “-P 100 -S 1 -I 10”.

67

Table 20: Comparison of ensemble methods.

Meta

classifier

Classifier

(parameters)

Accuracy Percentage

bad reports

removed

Percentage

good

reports

removed

Score

Boosting DecisionStump 54% 34% 15% 0.58

Boosting J48 (default) 57% 51% 35% 0.71

Boosting J48 (optimized 57% 49% 31% 0.67

Bagging DecisionStump 39% 0% 0% 0.61

Bagging J48 (default) 58% 47% 24% 0.60

Bagging J48 (optimized) 57% 42% 19% 0.57

(none) J48 (default) 57% 42% 18% 0.57

(none) J48 (optimized) 57% 42% 18% 0.57

One thing that is immediately noticeable is that one classifier is not removing

any report, neither bad nor good, at all. This might seem strange, but the reason is

simply that no single example was less than 25% likely of being good. A second

thing one might notice in the table is that differences between the results are more

noticeable than before. Both the removal rate for good report and the removal rate

for bad reports vary among the different runs complicating comparison of them.

The comparison tool mentioned in Section 5.5 on page 61 would have been to

great help. A third thing that might attract attention in this table is that the simple

decision tree was performing almost identical no matter if standard parameters or

the optimized parameters are used. This can only be seen as a sign that different

parameters have different effect in different environments. Recall that the

difference between these two sets of parameters was most notably when the data

used contained more attributes (see Section 5.4 on page 55).

The two single decision trees can be seen as reference points in this

experiment. Their output looks familiar (compare with Table 14 on page 59) and

the first classifier was based on a single decision tree. The result of an ensemble

classifier must be better than this in order to be considered a possible classifier. It

is naturally better to use the single decision tree if it outperforms an ensemble

method, but the same is also true if they are performing equally well. The single

decision tree is simple to read and understand, which is a benefit in itself. A simple

classifier will also, which might be of more importance, require less resources to

run. Doing a classification with a single decision tree is faster than doing the same

classification using ten or so decision trees.

With the single decision trees as reference points it is now possible to look at

the other classifiers one by one, except for bagging with DecisionStump since the

result for this classifier is so different from the other results. It might be easiest to

68

start with the remaining two classifiers utilizing bagging. The one of them that was

using the optimized parameters for the J48 decision tree was removing 42% of the

bad report and 19% of the good reports. This was not an improvement over the

single decision tree. In fact, it was slightly worse in this particular case. The

remaining bagging classifier was removing 5 percentage points more bad reports

when compared to the single decision trees, which was good, but it was also

removing 6 percentage points more good reports, which was very bad. Since the

downsides have increased more than the benefits, this classifier was no candidate

for the throne either. The same reasoning can be applied to boosting with

DecisionStump as classification algorithm. The two remaining classifiers that

utilized boosting differ by only 2 percentage points when it comes to removal of

bad reports, but with 4 percentage points when it comes to good reports. This

makes the parameter optimized version a winner over the version with

unoptimized parameters. Unfortunately neither of them was better than the single

decision tree. None of the five classifiers tested so far have performed better than

the single decision tree. The only remaining hope is bagging combined with

DecisionStump. A first attempt at getting a more helpful result then the one

presented here was to change the uncertainty settings. If the threshold was changed

from 25% to 30%, this particular classifier removed 34% of all bad report and

23% of all good reports. When it comes to the removal rate of bad reports this was

similar to how boosting with DecisionStump performed above, but the removal

rate for good reports was much worse. In summary it can be said that none of the

tested classifiers here performed better than the single decision tree and it was

concluded that it was not worthwhile to try to improve the results since initial

testing was not promising.

It should be noted that the comparison method used is not guaranteed to find

the most optimal classifier. It is not perfectly safe to assume that the classifiers are

producing linear results, so a comparison like this might not be perfectly accurate,

but it should be accurate enough for a first test like the one above in order to find

out if a path is worthwhile following or if it is better to spend time following

another. It might also be the case that other uncertainty settings would produce a

result that would make one of the ensemble classifiers better than the single

decision tree. Bagging with the parameter optimized decision tree has a result quite

similar to the single decision tree, and it is possible that it would perform better on

another set of data. However, since the increased complexity has an associated

cost, if nothing else it requires longer run times as noted above, the advantage

should be clear in order to use such a method.

5.10. Building a Custom Ensemble System

A downside with the ensemble methods described in the previous section was that

they required a large amount of resources. Even when the attributes were reduced

69

significantly only 10% of the data could be processed. This is a drawback since the

process needs much data in order to recognize all patterns. In some cases, such as

for the boosting method, much resources are needed since the process is iterative,

but for others there is no obvious reason for this. The ensemble process in itself

consists of parts that can be separated from each other. With this in mind it should

be possible to construct a tool that requires less memory than Weka does.

An ensemble method is, as previously stated, just several classifiers, in this

case decision trees, working together. They are trained independently on different

datasets. When they are used to make a classification, the classifiers are each

requested to do a classification. The algorithm then collects the results from the

classifiers and outputs the most frequent output. From an individual classifier's

perspective there is no difference between working alone or as part of an

ensemble. This insight can be used to modularize the procedure which in turn

saves memory both in the training phase and in the classification phase. Instead of

training all classifiers in the same run, which would require the training data for all

classifiers to be loaded in memory at the same time, it is possible to only load the

data needed for one particular classifier. The data needed to train the first classifier

can be loaded into memory before the first classifier is trained, but when that

training process has been completed the first set of data can be discarded before

the second set is loaded and the second classifier is trained. This process reduces

the need for memory during training significantly. This idea can be applied not

only to the training phase but also to the classification phase when reports are fed

to the algorithm in order to be classified. Weka keeps all trees in memory and runs

them all, but this is not needed. It works perfectly fine to run the classifiers one

after another instead. The problem that must be taken under consideration is how

the voting will be done. If all classifications are done by the same program it is

simple to use a variable for this purpose. If the classifiers instead are done

separately, perhaps as different programs, some more persistent storage, such as a

database, must be used.

Traditionally simple ensemble methods only do a majority vote among the

participating classifiers. This is a straight-forward approach but it has its

downsides. One such downside is that this scheme does not take in consideration

how sure a classifier is in its decision. It is for example possible that four

classifiers that are all very certain about one decision should get precedence over

six uncertain classifiers that suggest another decision, but the simple majority

principle would say otherwise. One possible refinement of the voting system

would be to use the certainty levels outputted by the trees. This level originates

from a class distribution that the tree will associate with every classification. A

typical output from the decision trees above might be “70% GOOD, 30% BAD”.

This output can easily be translated to a figure, between 0 (for 0%) and 1 (for

100%), saying how likely this report is to be good according to the decision tree.

70

In the above example the result would be 0.7. If a set of trees all output numbers

like this the overall “goodness” of a report could be found by summing the

individual numbers together. Given n trees the result would be between 0 and n.

An alternative to this is to divide the final result with the number of trees. The

result in that case would be between 0 and 1.

It was concluded that this setting required a set of individually trained decision

trees. Luckily, a set like that already existed. Recall that ten trees were created

previously in order to decide which subset the first classifier should be trained on.

Those ten trees, which were all trained on different parts of the dataset, could be

reused at this point. One issue that required extra attention was the need for

validation data. The total amount of data available here, which was all data except

for 25% which were kept for testing purposes, must be used both for training the

model and validating it. In order to avoid using the same data for both these two

purposes, which could lead to overfitting, some subset of the data must not be used

to train the (ensemble) classifier. This could not be achieved if all ten decision

trees created earlier would be used, since that would mean that all data had been

used for training, leaving no data for validation. The solution to this was to only

use eight of the ten trees for training. Two different runs were done, one which

used the first eight classifiers and one which used the last eight. This did not

exhaust all the possible combinations, but since the classifiers' results were similar

there was no reason to believe that one set of classifiers would work a lot better

together than any other set. However, this could have be revised had the concept

proved successful.

It turned out that training the meta classifier could be simplified by training the

separate classifiers individually, but using the meta classifier to make

classifications was harder. The solution found was to use a tool named

StarClassifier that was developed in order to be able to make classification easily

on examples stored in a database. This program will be explained in detail in

Appendix A were it is used in the way it was designed. For now it is enough to

know that this program reads examples from a database, classifies them with the

help of a decision tree and writes the probability that the report is good back to the

database. This tool could without modification be used for this purpose. The trick

used was that the program was run eight times, each time with a different decision

tree. Each time it ran it looked at the report, made a classification and wrote that

classification back to the database, which had been extended to have eight new

attributes, one for each tree to consider. When all the iterations had been made the

total result could simply be found by adding the partial results together, preferably

by using SUM in a SQL UPDATE statement. This process could be simplified

further if the individual results were not considered important. In that case the

configuration file to StarClassifier could be updated so it would add the partial

results together instead of writing them to different fields in the database.

71

The result of the two runs can be seen in Table 21. The first subset is when the

classifier is trained on the first eight parts of the data and validated on the last two,

and the second subset is when the classifier is trained on the last eight parts and

validated on the first two. The uncertainty level has been kept the same as in

previous runs. This means that only reports that are less than 25% probable of

being good have been deleted. Since the result of the eight classifiers have been

added together this means that reports must have a value less than 2 in order to be

deleted.

Table 21: Result produced by utilizing more data in an ensemble (uncertainty setting 25%).

Training

subsets

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1-8 57% 40% 17% 0.56

3-10 57% 41% 17% 0.56

The results shown in Table 21 are fairly similar to the results seen in Table 14

on page 59 from when the decision trees were tested separately. The best result

seen here is 40% removal rate for bad reports and 17% removal rate for good

reports. In the old experiment the best result, except for the last one which looked

fairly different from the others, was 41% removal rate for bad reports and 18%

removal rate for good reports, which for example tree three produced. The

difference here is fairly small and it is hard to say that one is better than the other

just based on the results, but there are two other aspects worth taking into

consideration. The first one is about simplicity again. The third decision tree alone

has 38 leaves and the eight first classifiers together have 5525 leaves. If these two

produce similar result it is probably wiser to go for the first one. It is easier to read

and, if necessary, manually fine tune a tree if it is small. It will also take less time

to do the actual classifications if the tree is small. Except for the time itself it will

be easier to configure the classification system if it only have to be run one time

instead of several times after which the outputs have to be further processed. The

second benefit of using the single tree is that it produced sensible results when the

uncertainty setting was changed. In the original experiment with the single

decision trees, as well as above, reports were removed if the probability of them

being good was less than 25%. This removed almost 20% of all good reports,

which might be too much. One solution to this problem is to change the setting

from 25% to, say, 20%. The third single decision tree would under such

circumstances remove 20% of the bad reports and 6% of the good ones. The

decision tree eventually chosen at this stage, number ten, produced the same

results when the setting was changed to this. This does not appear to be as simple

with the ensemble method. If the uncertainty setting was changed in the same way

72

for this classifier almost no reports would be affected at all as seen in Table 22. It

is possible that a middle way could be found even for these classifiers by using an

intermediate value for the uncertainty setting but it is still a complication and a

drawback. This method did not replace the simpler method already used.

Table 22: Result produced by utilizing more data in an ensemble (uncertainty setting 20%).

Training

subsets

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1-8 44% 9% 2% 0.58

3-10 42% 7% 2% 0.59

5.11. Ensemble with Veto

The ensemble method described above is not the only way multiple classifiers can

work together. Another approach is to give all classifiers the right to veto the

decision to remove a report. Conceptually this means that all classifiers once again

classified a report, but instead of summing the result the maximum value was

considered. Recall that the output produced by StarClassifier, which was the tool

used, was the probability that the report in question was good. The output was

between 0 (i.e., 0%) and 1 (i.e., 100%). If the maximum value was above some

threshold, the uncertainty setting, the report was kept. In other words this means

that all classifiers had to give the report in question a probability below this

threshold in order for the report to get deleted.

In the previously described ensemble method the system worked by letting

eight classifiers classify reports and writing the individual results back to the

database in eight different rows. Since the same classifications were the

foundation in this system too there was no need to redo any of the original work in

order to build a system allowing veto rights. The rest of the work was changed

slightly and instead of adding a last row holding the sum the maximum value was

considered. That value represented the probability that the report was good

according to the most optimistic classifier.

The uncertainty setting used was the same as in the previous experiments,

meaning that a report was only deleted if the (maximum) probability that the report

in question was good was less than 25%. The result of the experiment with this

setting is shown in Table 23. Once again the values differ from each other even

though the classifiers are expected to behave approximately the same. In fact, three

fourths of the participating classifiers are the same in the two runs. The values

shown in the table are fairly similar to the values seen in the last two runs when

the different subsets were tested when the first classifier was built (see Table 14 on

page 59). By comparing these two classifiers in the same way as classifiers have

73

been compared before it can be seen that this veto system does not provide any

improvement over the single decision tree unless it is also followed by an equally

sized or bigger increase of mistakes. What has been said about complexity holds in

this case too. This veto system was substantially more complex than a single

decision tree and using a more complex system should be well justifiable. Simply

put, this was not a better system than the one that already existed.

Table 23: Result produced by ensemble with veto.

Training

subsets

Accuracy Percentage

bad reports

removed

Percentage

good reports

removed

Score

1-8 57% 40% 16% 0.56

3-10 49% 19% 6% 0.56

5.12. Description of the Classifier

The first classifier created turned out to be the one that finally won. The

improvements tested did not outperform this classifier and it was therefore no

reason to change. The classifier selected was a decision tree, created by the J48

implementation in Weka. The settings used can be seen in Table 24 (see Table 11

on page 56 for descriptions of the different parameters).

The classifier was trained with 10% of all the training data with all attributes

present. This particular subset was the last of the ten tested subsets. Since different

error were not equally severe a report had to have a probability of being good of

less than 25% in order to be classified as bad. On the remainder of the training

data this classifier successfully removed 22% of all bad reports while

unfortunately removing 7% of all good reports.

74

Table 24: Settings used for the classifier.

Parameter Value used

binarySplits false

confidenceFactor 0.3

debug false

minNumObj 15

numFolds 3

reducedErrorPruning false

saveInstanceData false

seed 1

subtreeRaising true

unpruned false

useLaplace false

75

6. Using the Classifier

Training a classifier is not the last step to take in a machine learning process. Some

further considerations must be dealt with in order to make the classifier useful in

practice. These considerations will be discussed in this section.

6.1. Theoretical Aspects

There are two aspects that must be considered before a filtering system is put in

practice: what will happen to the filtered items and which items should be filtered.

Both these questions will be discussed below.

Filtering systems aim at separating different classes of entities from a set where

they are mixed together. In some cases both classes are wanted but it is desirable

to separate them anyway. A large multinational corporation might for example

want to separate incoming emails based on which language they are written in.

Messages in English should be redirected to an English speaking office, messages

in Swedish to a Swedish speaking office, and so on. In some other systems all

classes are not wanted. Spam messages are for example not wanted at all. In that

case it is desirable to get rid of the unwanted items and keep the others.

Even if one class is not wanted at all there are different approaches that can be

employed. The most straight-forward one is to simply delete all unwanted items. It

is usually simple and fast to do so and no further processing is needed. The main

problem with this approach is that the system can make mistakes. If filtered out

items are permanently deleted there is no way of either detecting or undoing those

mistakes. In some cases this is serious drawbacks and another solution might be

preferable. In a spam filtering system it might be better to keep filtered out

messages in a certain folder. The recipient of the messages could then browse

through the folder if they wanted. It is also possible to imagine that messages are

only kept in this folder for a certain amount of time. Say for example that a spam

message is automatically deleted after one week unless someone marks it as non-

spam.

In some situations it is for one or another reason a good idea to do initial

filtering before the actual filtering is done. More generally the issue is about using

several layers of filtering. Possible reasons for using an initial filter include safety

and performance. It might be the case that a person receives both notifications

76

about new software releases and love letters. Both these classes contain spam

messages and legitimate messages. However, the love letters are so precious that it

is worth letting more spam messages through just to make sure no love letter is

ever erased. One solution in this case is to make a rudimentary initial filtering that

aims at finding potential love letters and make sure that those bypasses the actual

spam filtering. Another reason to use initial filtering is to save resources. It might

be the case that the total dataset is very large but some simple constraints can

reduce it substantially. A person given the task to find all primes between, say,

100000 and 100050 would probably find the task a bit challenging if no tools were

to be used. A first step could be to immediately remove all even numbers, since the

only even prime is 2 and that number is not present here. This initial filtering

would remove half of all potential numbers almost without any effort.

Initial filtering was used to improve performance in the previously mentioned

image analysis system [BAS+98]. The aim of the system was to detect volcanoes

on Venus based on a set of images. The approach used was, conceptually, to

assume that all pixels in the image could be volcanoes and then a filtering system

was used to filter out the actual volcanoes. Letting the filtering system work on all

pixels in the image would require too much computational resources. The

mitigation used was to employ a Focus of Attention (FOA) system that did a first

screening of the image. All pixels that did not show any signs at all of being an

actual volcano were filtered away directly.

How an appropriate filter should be designed depends on the domain. In the

volcano example it might be appropriate to consider geological features that are

easily noticed or known knowledge about images in general. It is not necessary to

investigate every pixel in a large area where all pixels look the same since no

volcanoes, nor anything else, can be detected there. In the spam filtering example

it might be a good idea to consider the email address of the sender or words in the

message. Some spam filters let its user create a list of words that acts almost as

passwords [Gra02]. All messages that contain any of the words found in the list

will bypass the spam filter.

When actually implementing an initial filter it can either be incorporated as part

of the primary filter or kept separately. The first method requires changes to the

classifier used but not to the surrounding system. If a decision tree is used the first

method could simply take the form of adding extra conditions and leaves near the

root of the tree. All entities would still go through the same systems but the ones

fulfilling the conditions would be handled quickly once they reached the filter. The

second method, which does not require any change of the classifier, might be more

appropriate if a model which is harder to modify is used. For this to work the

surrounding system must be changed so that some entities are not fed into the

filter. The change can sometimes be as easy as changing a configuration file.

77

6.2. StarClassifier

Weka is a good tool for training classifiers and comparing the results of using

different parameters. Once a classifier is trained and ready to be used Weka might,

however, be a little cumbersome, especially if Weka is not already installed. It is

sometimes the case that a classifier is trained and used on different machines. To

solve this problem the tool StarClassifier was developed as part of this work.

StarClassifier is light-weight, easy-to-use and fairly standalone. The tool is built

with the purpose of fitting well in the environment at hand. It should not be hard to

setup and configure the tool so that it filters abuse reports according to the model

created. StarClassifier makes it possible to make the theoretical work presented

here into something practical.

StarClassifier works by first reading examples, in this case abuse reports,

directly from a database. The examples are then classified with the help of an

already created model that should be made available to the tool. Using Weka is the

preferred way of creating the model in question. Once a classification has been

made the result is written back to the database. The result outputted is not a class

(e.g., BAD) but rather a probability value (e.g., 42%). It is configurable if the

value should be the probability that the report is good or if is should be the

probability that the report is bad.

An overview of how StarClassifier fits into the overall system can be seen in

Figure 7. Weka uses examples from the database to create a model, which was

done in previous sections of this report. StarClassifier then uses that model

together with input from the database to make classifications. The results of those

classifications are written back to the database.

78

Figure 7: Overview of how StarClassifier fits into the overall system. The overview is
simplified slightly by showing the output from StarClassifier as a class. In reality the output
is the estimated probability.

StarClassifier is built with Stardoll in mind, but it can be used by anybody who

has a similar need. StarClassifier is not tied to this particular domain and can be

used whenever a decision tree should be used to make classifications on examples

stored in a database. The tool is free software, licensed under the GNU General

Public License (GPL) [Fre07]. Instructions about how to obtain and use

StarClassifier can be found in Appendix A.

6.3. Handling of Rejected Reports

Up until now reports that have been filtered out have been referred to as deleted or

removed, but exactly how reports that are flagged by the system should be handled

is not decided. There is no need to decide on this now since it does not change the

overall behavior of the system but it is worthwhile to go through the possibilities.

The first, and the one used so far, method of dealing with the bad reports is to

ignore them completely. This is basically what happens today if a report is

classified as bad by a human, but letting a computer do this decision appears to be

ethically more complex. Whether or not this is a good idea also depend on the

accuracy of the filtering algorithm. The second possible method is to save all the

reports that are filtered out for a certain period of time and then send them back to

the users who filed the reports. Those users would get a message saying that the

report has not been fully understood by the robot system. If a user still wishes to

file a report they will have to find the object again and file a new report. At first

glance this method might seem inefficient. It would, just to mention one thing,

create a huge amount of messages. However, there might be some benefits from a

solution like that. Most importantly it might force users to “cool off”. The

Customer Service believes that at least some of the bad reports are written by upset

users against former friends after a disagreement between the two. It is for

example possible for two friends to suddenly fall out in school and then report

each other for no reason. If these users are asked a few days later if they really

want to go ahead and file the report they will probably change their minds.

Another benefit that would be gained is user education. The current system does

not give users any feedback about how their reports are handled by the Customer

Service. It is, in other words, possible for someone to write bad reports without

knowing about it. Perhaps the reports appear very clear and concise to the user

writing them. Letting users know when their reports cannot be understood can

therefore be a good thing in itself. One last benefit is reduced redundancy. From

time to time it happens that a user writes something inappropriate and shortly after,

perhaps after being warned, changes it to something appropriate. Reports filed on

this content are no longer useful since the problem has already been taken care of.

If the users who filed these reports would go back to the content, in order to refile

the report, they would notice this.

79

No matter which of the following methods that will be used the first step will

be to compare the classifier's result with the result currently set by the Customer

Service. The classifier has been trained and validated using old data. If the

preprocessing has been done properly this should match how that particular data

would appear during actual classification, but it is possible that a slightly different

result would be given. Another reason there might be a difference between old and

new data is that the reporting behavior can have changed since the database was

copied. A first step could be to simply show in the administrative interface which

reports that would have been deleted by an automated system.

6.4. Protected Reports

It has throughout this report been assumed that all filed reports should be filtered

through this system. In reality this does not have to be the case since extra

conditions can be added in order to protect reports that are more valuable than

others. These reports should then bypass the filtering system and automatically get

saved. The justification of using these extra conditions is that some reports might

be considered so important that all of them should be checked by hand. When a

report is filed the report has to be categorized by the reporting user. One of these

categories is threats and this might be considered so important that the risk of

losing one helpful report in this category is not worth taking. On the other hand

one can not let too many reports be caught by this initial filtering since that would

defeat the purpose of the system. The category threats is, as mentioned, a category

with many bad reports since this is a typical category that is used when reports are

filed out of ill will.

The Customer Service was asked about which reports that should get caught by

this initial filtering. They came up with two sets of conditions, where one

considered the reported user and one considered the reporting user. When it comes

to the reported user they wanted all reports concerning previously abusive users

and new users to get automatically kept. Reports against these users are likely to

be good and they should be checked manually. When it comes to the reporting user

the Customer Service wants all reports filed by paying users or power users to

bypass the filter. There is no clear definition of what a power user is or what

requirements one need to meet in order to be a power user, but these users are the

most active users on the site. The idea that paying users should not get filtered by

an automated system was also seen during the case studies (see Section 2.3 on

page 9) where it was noted that the community Faceparty used a similar policy.

Translating the Customer Service's somewhat vague conditions into exact ones

that filtering could be based on is not trivial, nor is it needed right now. These

conditions can easily be implemented after the system has been built and they may

also be changed afterwards. Something that is good to sort out now is

approximately how many reports that will be covered by these rules since this

80

affect the applicability of the system. In order to investigate this the conditions

have to be translated into more strict rules. When it comes to the reported user the

original condition was that previously abusive users and new users should pass. A

previously abusive user has been defined as a user who has received a warning

earlier and a new user has been defied as a user who joined Stardoll the last month.

When it comes to the reporting user two other conditions were present. The first

stated that paying users should not get filtered and this is easy since no translation

or refinement it needed. It is easy and unambiguous to tell if a user is a paying user

or not. The second condition is harder since it talks about the undefined term

power user. A power user has here been defined to be a user who has more than

200 starpoints. There is no good rationale to do so and this number can not be

justified more than any other number in the same order of magnitude. This is the

second starpoint level that entitles the user to a reward. The fact that this number is

fairly arbitrary should not cause too much concern since the goal here is to find

some rudimentary definition for a power user and the starpoint system should be

good enough for the purpose. The most important aspect is to capture the most

active users and the criteria here select 2.5% of the entire amount of users.

When the four criteria specified above were applied to the dataset it turned out

that a large amount of all report were covered by it. More specific, 75% of all

reports were covered, meaning that three fourths of all data would never reach the

filtering system built. The protection based on who the report was against covered

53% of all reports and the protection based on who filed the report covered 43% of

all reports. Since these number together are larger than the number first specified it

can be seen that there is an overlap and some reports are protected for multiple

reasons. It should be noted that among these protected reports only 41% of all

reports are good. This is indeed more than the same figure among all reports,

which is 39%, but it could be assumed that the protected reports should have a

much higher average quality since they are considered so important that these extra

conditions are put in place to protect them.

81

7. Evaluating the Classifier

Before a classifier is used it is a good idea to estimate its performance. This

performance estimate is calculated using the testing data that was put away in the

beginning of the work. It is also worthwhile to consider what is a good result and

what is not, and doing so require some knowledge about the circumstances and the

domain. The domain-knowledge is important because different domains have very

different requirements for what is acceptable. Consider for example a classifier

that aims at predicting the outcome of roulette. The classifier only has to be

slightly better than a random guess in order to make the owner very, very rich.

When trying to determining if the next color will be red or black (ignoring green

totally) it would be acceptable to have a classifier that is right 51% of the time. If

instead a paternity test classifier is considered the result has to be a lot better than

just a random guess. In that case it might very well be unacceptable with a

classifier that is right 99% of the time. These two cases are extreme and in other

situations it is likely that some intermediate performance level is what is needed

for the classifier to be acceptable. Four different employees at Stardoll have been

interviewed in order to get their view on the classifier's performance and what an

acceptable level could be in this case.

7.1. Evaluation on New Data

In the beginning 25% of all valid data was put away for testing purposes, as

mentioned in Section 4.2 on page 38. The reason for this was that it is important to

test a classifier on data that is completely fresh in order to get an idea on how it

would perform on new data. Before this data can be used to test the classifier it has

to be preprocessed in a similar way that the training data was. It is vital that the

data is presented in the same way during both training and testing. If, for example,

missing values were replaced by some dedicated value on the training data, the

same replacement must be done on the testing data. The main difference between

preprocessing training data and preprocessing testing data is that the latter might

be simpler. During training all possible attributes should be calculated because it is

not possible to know which will actually be used by the classifier. During testing,

on the other hand, this is known since the structure of the tree is known. Only

82

attributes that are actually considered are necessary to calculate. In this particular

classifier only 14, out of the over 200 available at first, attributes were needed.

In Table 25 the result of this test is seen. The result does not surprise much

since it is very similar to the one received during training. Between one fifth and

one quarter, 22% to be exact, of all bad reports are successfully identified by the

system, while a little under one tenth, 8%, of the good reports are incorrectly

classified as bad.

Table 25: Result of final test.

Accuracy Percentage bad

reports removed

Percentage good

reports removed

Score

49% 22% 8% 0.56

During the final test the uncertainty setting used was the one originally decided

upon, in other words reports were removed only if the probability of them being

good was less than 25%. This is not necessarily the setting that would be used in a

real situation and it is worthwhile looking at how the classifier would perform

under different uncertainty settings. Figure 8 shows the percentage of bad reports

removed and percentage of good reports removed under uncertainty settings

between 0 and 0.5. Using values higher than 0.5 is not relevant since that would

put the bias in the wrong direction. It can be seen that the curve is not very smooth.

The reason for this is simply that all probability values are not equally common. It

is for example the case that no reports are assigned a priority of being good less

than 10%.

One might argue that this curve does not provide the necessary information

about the classifier and that removing reports randomly would produce a similar

curve. Since the number of bad reports already is higher than the number of good

reports even a random classifier would remove more bad reports than good reports.

This is indeed true but it should be noted that the curve presented shows the

percentage of reports removed, not the absolute numbers. If reports were removed

randomly the percentage of good reports removed and the percentage of bad

reports removed would be the same. The result presented here removes in total

17% of all reports in the system.19 A random classifier would not make any

difference between good and bad reports, hence remove 17% of both categories.

If focus instead is turned to absolute numbers the objection is valid. A curve

which shows the number of reports removed will change depending on the

distribution between the types of reports. Such a curve can still be interesting and

one is shown in Figure 9. The curve is very similar to the one previously

presented. The difference is that the area between the two curves is larger.

19 Out of the bad reports, which consist of 61% of all reports, 22% is removed. Out of the
good reports, which consist of 39% of all reports, 8% is removed. Put together this
means that 61% • 22% + 39% • 8% = 17% of all reports are removed.

83

Another way of visualizing the result is to plot a chart showing the correlation

between precision and recall. This curve, seen in Figure 10, shows the trade-off

between the number of examples matched and the correctness of the matches. The

idea is that if only one report is to be removed the classifier can take the one it is

most certain about, hence have a high correctness, but it would only do little,

hence have a low number of matched examples. Correctness is often referred to as

precision and the number of matched examples as recall. Precision is, in this case,

the number of removed bad reports divided by the total number of removed

84

Figure 8: Diagram showing the amount of reports removed relative to the number of
reports in each class.

0 0.1 0.2 0.3 0.4 0.5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Bad reports Good reportsUncertainty setting

R
e
p
o
rt

s
re

m
o
v
e
d
 (

re
la

ti
v
e
 t

o
 c

la
ss

)

Figure 9: Diagram showing the amount of reports removed.

0 0.1 0.2 0.3 0.4 0.5

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Bad reports Good reportsUncertainty setting

R
e
p
o
rt

s
re

m
o
v
e
d
 (

a
b
so

lu
te

 n
u
m

b
e
rs

)

reports. Recall is the number of removed bad reports divided by the total number

of bad reports. By changing the uncertainty settings a curve can be plotted that

shows these two values against each other.

With the chosen uncertainty setting the precision is 81% and the recall is 22%.

The recall is a familiar number and it is simply the percentage bad reports removed

which has been listed several times already. The precision is slightly harder to

calculate. It is the number of bad reports removed divided by the total number of

removed reports. The amount of bad reports removed is 61% • 22% of all reports.

The amount of reports removed is 61% • 22% + 39% • 8%. By dividing these

numbers the result becomes 81%. Precision can be used to measure how useful

this classifier is. If reports would just have been removed randomly 61% of the

removed reports would be bad, since that is the class distribution in data. By using

this classifier the number is instead 81%, which shows an improvement. It is also

possible to look at it from the other way around. When removing reports randomly

39% of the removed reports are good. With this classifier the number changes to

19%.

7.2. External Factors Affecting the Result

The result presented above is not as good as expected. There are two external

reasons which might have affected the result. The first of these are lack of data. As

written earlier, the data that is distributed in shards have not been available. This

means that a lot of metadata, for example the number of friends a user has, how

85

Figure 10: Precision-recall curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

many times a user has been banned and how many unique guestbooks a user has

written in, have been unavailable. It is impossible to know how important this

metadata is without looking at it hence it is unknown if the presence of it would

change the end result or not. Except for the metadata, the absence of data is worth

mentioning. Almost all reportable objects, such as guestbook entries, blog posts,

user presentation and so on, are sharded. This is a clear drawback since, strictly

speaking, the quality of a report has to do with the possible violations of the rules,

and weather a violation has taken place or not can been seen in the reported object.

In other words, if a guestbook entry has been reported by a user saying it contains

bad language, the guestbook entry itself is the only thing that should be needed to

determine if the entry contains bad language or not.

The second external factor that might have affected the result is the noise in the

available data. Noise in this sense refers to reports that have been misclassified in

the past. Customer Service Representatives handling abuse reports have been

setting the report quality since start, but the flag has just been ignored until now

and no follow-ups have been done. It is likely that some incorrect classifications

have been done, but it has not been feasible to do anything else but blindly trust

the quality level that has been set in the database. First of all it is hard to find

someone who could reclassify reports and, second, a lot of data was missing. It

would also be impossible to manually recheck all but a few reports due to the

enormous amount of reports available. However, in some special cases the quality

of reports can be known. One example of such a case is when it comes to reports

about RealCelebs. It is safe to assume that celebrities specially invited to the site

have not committed any violations of the rules; hence 0% of all reports against

RealCelebs should be classified as good. In reality this is not the case and 13% of

all reports against RealCelebs are classified as good, which shows that quite a few

reports have slipped through. One of these reports is stating that Avril Lavigne is

selling drugs via Stardoll, which is obviously not true. Another report that is

clearly bad is saying that Ashley Olsen is phishing. It is worth noting that the

mistakes covered by this simple rule only go one way. Out of a set of reports that

are know to be bad, 13% are classified as good. It is also likely that reports that are

indeed bad are classified as good.

Another problem is that different Customer Service Representatives might

classify uncertain reports in different ways. Since there is no way of telling the

difference between the best report ever written and a report that barely passed the

test by looking at a reports afterwards, this might be a problem. There is,

furthermore, no way of telling which Customer Service Representative that

handled a certain report, so it is not possible to filter reports based on that.

The problem of noisy data is not in any way unique to this project. It was for

example a problem in the image analysis software [BAS+98] discussed earlier.

Different geologists had different options if a certain artifact on the image was in

86

fact a volcano or not. The solution employed in that study was to let different

geologists classify the same image and they also used a notion of certainty. The

geologists did not only determine if a certain artifact was a volcano or not but they

also assigned the artifact one of four labels depending on how certain it was that

the artifact was a volcano. Neither multiple classifications nor certainty labeling

could be done in this study. The largest obstacle being that the reported objects

were unavailable. In order to get a second opinion from a domain expert all

information must be available.

7.3. Interviews

Three interviews were performed with different employees on Stardoll in order to

get reactions on this thesis work, their thoughts about an automated system in

general and their view on the result presented. Representatives from three different

departments were interviewed in order to obtain several perspectives and hence

approach the issue from different angles.

7.3.1. Customer Service

Margareta Petersson, Head of Customer Service, and Johannes Schildt, Customer

Service Representative, have been present from the beginning of this thesis work

and they have been the primary contacts at the Customer Service. Much of their

reasoning have already been incorporated in parts of this report, but during this

interview they were given the opportunity to express their view on the work as a

whole and, especially, the result.

Before this master thesis was initiated the outline of the project had been

discussed with Petersson. No details were specifically set in this initial phase but it

was given that the work should concern the employment of automated methods in

the process of handling abuse reports. Once the work was started a meeting was

held with a majority of all Customer Service Representatives, during which a few

leads about possible automated methods were discussed. No concrete decisions

were made during this meeting and most ideas about how the work could be

simplified focused on small changes in the current systems, such as bug fixes. In

retrospective it is easy to see that it would have been beneficial to conduct more

meetings during the process, especially after the main focus area of the project had

been decided upon. This would have made it easier for the representatives to

contribute with ideas within the frames at hand.

The Customer Service, and especially Schildt, did at a later point make an

attempt to change the focus to prioritize reports. The rationale for this was that a

filtering system is only useful if a substantial amount of bad reports are written,

while priorities are applicable even in a system with mostly good reports. Schildt

believes that future changes in the reporting procedure will make users more prone

to write correct reports, which will lower the amount of bad ones. The changes in

87

question will be discussed more in Section 8.4.3 on page 96. The reason the work

was not changed was that much effort had already been put into an automated

filtering system and changing the focus would possibly render this work unusable.

Additionally a system that assigns priorities comes with other problems, as seen in

Section 3.3.1 on page 24.

Petersson and Schildt are not pleased with the result presented since they were

expecting both better figures and a more practical result, preferably earlier during

the process. They can not give an exact figure for an acceptable trade-off between

a removal rate for good reports and a removal rate for bad reports but it is clear

that the one provided here is unacceptable. A small loss is acceptable if the win

from such a system would be large enough, but in this case the number of bad

reports removed is too low to justify the number of good reports removed.

One reason that some reports are classified incorrectly is believed to be because

most people working with the reports are extra workers working from home. They

are informed and updated about the latest news by their manager but it is hard for

them to always be updated on what is happening and how this affects their work

since they are not in the office where it all happens. The vast amount of reports

can also be difficult to handle since each report may require a fair amount of focus

and effort.

7.3.2. Management

The Chief Executive Officer, Mattias Miksche, has been interviewed in order to

get reflections from a management perspective. Miksche has been aware of the

thesis work during the process and stresses that this is a very important area for

Stardoll. A more effective handling of abuse reports has two potential benefits.

The first, but not the most important, benefit is the reduced costs. The current

manual handling process is costly but, according to Miksche, the cost seen today is

acceptable. The second, and far more important factor, is that of responsibility.

Over seventeen million young users have signed up for an account on Stardoll and

the environment must be safe. It is vital that the necessary actions are taken, and

that they are taken in a timely fashion, once a violation has happened. Because of

this responsibility Miksche prefers a manual system where all reports written will

be reviewed by a Customer Service Representative.

In spite of this, Miksche is very positive to automated methods in general and

suggests that such a system should have been put in place earlier. The main focus

on these systems should be detection rather than filtering. One example mentioned

is an automated system that would detect if a user is trying to make other users

give away personal information about themselves, even if the messages are never

reported.

The result presented is not good enough to make the system applicable and the

method in itself is problematic. The trade-off between removing good reports and

88

removing bad reports is hard to make since it very much depends on which reports

are removed. One single incorrect classified report could potentially, if the report

in question was the most important ever filed, have disastrous consequences.

Miksche is also concerned about the mistakes made in the current process and says

that it would be desirable if this problem could be mitigated.

It is unfortunate that data has been missing during the work. Miksche believes

that most patterns are available in the part of the data that has been missing and

thinks that the result could have been improved if all data could have been made

available for processing.

7.3.3. Development

The person who came up with the idea for this thesis work was Mikael Krantz,

System Developer. The reason is that there has always been an assumption that

some work could be done in this field. The reason that reports are classified as

good or bad when they are handled by the Customer Service is mainly because of

the prospective of doing some automated processing based on those flags. The

reason to why this work was done in the form of a master thesis is that there is a

risk involved since it is hard to know how large the benefits, if any, would turn out

to be. This risk together with the extent of the work made it hard to fit into the

normal plan. Announcing the work as a master thesis project seemed like a good

way to avoid allocating own resources on a potentially unfruitful project but still

investigate the matter.

The reason all data could not be used was because it could not be copied from

the live database. The reason for that was twofold. First, the live database servers

were already dealing with a very heavy load. Copying large amounts of data from

them would stress the servers even further and this is unfortunate as it could cause

longer response times for the users. Second, the amount of data needed to be

copied is very large. The sharding scheme used separates content based on the user

id of the user related to the content in question. Different databases are used for

different ranges of user id numbers. Content related to the first million users are

saved in one database, content related to the second million are saved in another

database, and so on. In total there are eighteen shards since the number of users is

a bit above seventeen millions now. The average size of one of these shards is

approximately 40 Gb, meaning that the total amount of data available is very large,

hence difficult to transfer to another environment and hard to handle in general.

Krantz thinks that it would be easier to copy just one of the shards since that

would reduce the amount and make the data more manageable.

The result presented is reasonable given the circumstances and not surprising. It

is unfortunate that the system did not perform better but the risks involved were

known beforehand. The system can not be used as it is, but it might be possible to

use it in alternative ways. One option is to use the system to flag reports but still

89

handle all reports manually. It would then be possible to observe which type of

reports that are incorrectly classified as bad. Perhaps this would give some insight

into how the filtering process could be enhanced. Another alternative is to use the

output from the classifier, which is the estimated probability that a report is good,

as a priority measurement. It was seen in Section 3.3.1 on page 24 that priority and

quality is not necessarily the same, but the correlation might be strong enough to

still make this modified system usable. The idea would be to sort the reports in the

administrative interface according to priority and show the most prioritized reports

first.

Krantz says that one reason for the noise in the data might be because the

quality flag has never been used before and no follow-ups have been conducted. It

is possible that the flag would be set with more care if the representatives knew

that it is actually used and that it is helpful. If this is the case it would be possible

to inform about the system now and then retrain the classifier after a while and

only base it on new, hopefully less noisy, data.

90

8. Result and Analysis

This section, which is the last, will present the result from a more general level and

analyze it. The previous section evaluated the classifier itself, but the result must

also be considered in context. The aim of this thesis was to investigate how an

automated method could improve efficiency on a large website. This section also

discusses possible starting points for future work in this field.

8.1. Conclusions

The system constructed could with little effort be put in place in order to filter

reports. A classifier has been trained and a tool that can make it practical to use it

has been developed. The system is in that sense complete and ready to be used.

The available options should be compared when analyzing the system to

determine if it should be used or not. The options available are to either put the

system in place or to use the manual system. Three different aspects can be

considered when doing the comparison.

Accuracy. The classifier's performance is lower than expected, which suggests

that the system should not be used. On the other hand it is important to keep in

mind that the process used today has drawbacks too. First of all the classifications

made are not perfect and mistakes are done. The exact error rate is unfortunately

hard to establish but the issue was discussed in Section 7.2 on page 85 where it

was seen that the manual process, at least under the circumstances discussed there,

had an error rate as high as 13%. Determining the corresponding number for the

classifier presented here is easier. Out of the reports removed by the classifier 81%

are expected to be bad. This means that 19% of the removed reports are incorrectly

removed. The figures are closer than one might think at first.

Economics. Using an automated system could potentially save money. The

classifier presented here would remove 17% of all reports. If 20000 reports are

filed each week this would equal 3400 less reports to handle each week. Given that

the average time needed to handle a report is 40 seconds approximately 38

working hours per week could be saved.

Response time. Response time can be shortened by employing an automated

system. Shorter response times can help make Stardoll safer since the appropriate

91

action can be taken faster when rules are violated. A safer site is desirable from

several perspectives.

From a strictly economical perspective there is a trade-off between acting fast

and acting correctly. Both approaches risk dissatisfying users which have

economical drawbacks if the dissatisfaction means that the users are spending less

time on the site or decides to leave it altogether. If speed is shortened at the

expense of accuracy, which is the case if the automated method is used, user can

get dissatisfied since their reports are ignored. If instead accuracy is prioritized the

abuses are left visible on the site for extended periods of time which can cause

users to feel that the site is unsafe and unfriendly since inappropriate content is

visible. The trade-off between these aspects does not appear to be well studied and

it is hard to make any claims about what role it plays in the case at hand.

This thesis work aimed at investigating the employment of an automated

method on a large website. The most interesting question to consider is if

efficiency can be improved and it appears that improvements indeed can be

achieved. The numbers shown above are promising and indicate that time can be

saved and resources freed by using automated methods. The problem is that a

suitable accuracy has to be found. Even if an automated method increases

performance it might not be feasible to put it in place if the accuracy presented by

the system is too low. This indicates that systems that complements rather than

replaces current processes are extra promising. An automated detection system that

would detect abuses before they are filed is an example of such a system. Mistakes

by that type of system are not as severe as the ones made by the filtering system

and other similar systems.

The classifier presented here is not performing as well as expected.

Considering the problems encountered along the way the result is acceptable, but

not good enough to make the system usable in practice. Neither the Customer

Service nor the Management think that the result showed is acceptable for a usable

filtering system. This is unfortunate but the primary aim of this work was to

investigate the issue, which has been done.

8.2. Contributions

Several contributions have been made and this sections aims at listing them. The

most apparent contribution is that this thesis work has created a system that could

be practically used without much work required. Unfortunately the performance

might make it inappropriate to use, but parts of the system could be reusable for

example if the classifier is retrained at some later point in time. Perhaps it would

be possible to obtain less noisy data, for example by letting several Customer

Service Representatives collaborate on classifying some of the reports. Using this

less noisy data to build a new system would be easier since the work can be based

on the work already performed.

92

Future work in the machine learning field at Stardoll, and possibly elsewhere,

can learn from this work. The lessons learned can hopefully make it easier to avoid

similar problems in the future. It is also possible that observations made here, for

example that the differences between different subsets have been fairly small, can

lead to more efficient work.

During this work it has been apparent that automatic filtering, especially in this

noisy environment, has serious drawbacks. This work can hopefully make these

drawbacks visible for people about to do work in this area. All such people are

recommended to read about the interviews performed and also look at the pointers

about future research that are available in this section.

StarClassifier has been developed and released under a free software license.

The target group for StarClassifier is fairly small and it can only be used for one

particular purpose. The tool is, nonetheless, available for anybody who finds the

need for it.

8.3. Lessons Learned

Many lessons have been learned during this work. Some of them are extra

important and people who later on are working in this field might find them

helpful.

Data is difficult to access. There are a lot of practical issues that needs to be

solved when working with large amounts of data. Just because data is located in a

database on a nearby host it is not necessarily ready to be used. Even if it is not

possible to get access to all data it is helpful to know which data that will be

available and when.

One lesson learned is that it would have been a good idea to have more

meetings with the potential users of the system, in this case primarily the Customer

Service. These concepts tend to get fairly abstract and it is easy to misinterpret

each other. Having regular status meetings where the progress is discussed is

probably a good way to better understand each other. The related lessons that have

been learned in software development appear to be applicable here too and getting

inspired by agile methods [BA04] might help.

It has been pointed out before that it is often the case that numerous small tools

must be developed during a machine learning process [BAS+98]. The reason for

building these tools is that there is no easily accessible tool that can do the tasks at

hand. If it would be possible to make a platform for doing these operations it

would help a lot. At the same time the problem is difficult to solve since each

problem domain requires its own set of tools.

93

8.4. Future Research

The work presented in this report can hopefully function as a basis for future work

in this area on Stardoll as well as on other communities. Before doing any future

work it is worth considering the perspective from which the issue is approached.

The automatic filtering process described here is only one of several ways

improvements can be achieved.

The following subsections will discuss possibilities for future work from three

different perspectives.

8.4.1. Improved Automatic Filtering

The result presented in this thesis might not look very promising. Several methods

have been tested and some enhancement techniques have been tried in order to

refined the result, but without any improvements. Based on this it might be easy to

argue that automatic filtering looks like a dead-end and that future work is unlikely

to result in a usable system. This might be the case but it is also possible that a

project with more resources would be able to produce a significantly better result.

Some of the steps that were initially planned to be performed had to be skipped

due to lack of data or lack of computing resources. The lack of data made it

impossible to calculate some of the attributes, and time could have been saved and

used for other tasks if more computing resources had been available. The general

method used would not need to be changed significantly if all data had been

available. The new metadata attributes, such as how many friends a user has, could

be treated in the same way metadata has been treated in the currently available

dataset. Some challenge is presented considering the actual objects. Attributes

concerning those would need to form a new category in the attribute list since the

attribute list used in this project only had categories for the reported user, the

reporting user and the report. Extra care should be taken when handling attributes

related to the actual objects since it is reasonable to believe much information is

contained in them and because the current methods would not be applicable. The

objects contain text and this text must be handled in some way. One lead is to

investigate spam filters, for example, Baysian filtering. It might also be worthwhile

investigating if Baysian filtering could be used on a more general level, by for

example comparing all content produced by different users and see if a pattern

emerges showing abusive users.

In some experiments different subsets of the data has been processed

independently but with the same method. During these experiments it was seen

that the result is fairly similar in different subsets. This leads to the assumption

that it would be beneficial to focus on increasing the number of attributes rather

than the number of examples. It has been, see Section 7.3.3 on page 89, said that it

might be possible to copy one shard from the live database and use that for future

work in this field. This would be welcomed but some issues are worth considering.

94

If focus is only on the reported object the number of reports that could be used

would be approximately 1/18 of all reports, assuming that the reports are

distributed equally between the eighteen shards. If, on the other hand, the general

behavior of the users are to be to taken into account the data is needed for both the

reported user and the reporting user. If reports are filed equally often between all

sets of users the amount of reports that could be used would decrease to 1/18 •

1/18 = 1/324 of all reports filed, which is rather small. If historical data would be

used this number would be different since users in the first shard have simply had

more time to file reports and write objects that could be reported. Except for the

problem of selecting a shard with enough data it is important to consider that the

data will be biased. In the subsets used in the experiments performed during this

project the reports have been randomly selected. In the case one single shard is

used only one type of users will be taken into account. If, for example, the first

shard is used the reports are either old or written by and against experienced users.

Old reports may differ from the average report since, among other things, the

interface for filing a report has changed. It appears, for example, that users more

often misinterpreted the reporting system for an instant messaging function in the

beginning. Report written by or against experienced users may also differ in one or

another way. It was seen that experienced users tend to write better report than

inexperienced users (see Appendix B).

8.4.2. Other Automated Methods

The idea of shortening the response time by ordering reports according to

estimated priority has been present from the beginning. This has both some

appealing benefits, such as reduced risks of harming the process, and some

complicating characteristics, such as less time saved since all reports still have to

be handled. Both these aspects have been discussed in this report and will not be

touched more upon in this section. It is probably possible to use a similar method

like the one used here. The fact that the flag considered here represented the

quality has not affected the choice of method. It would be possible to rerun all

steps but instead use a flag representing the priority. The problem with this is that

no priority flags are currently available. If it is desirable to follow this road later

on it is a good idea to make the necessary modifications to the administrative

interface as soon as possible in order to collect enough data. The interface should

make it possible to assign, in addition to the report quality, report priority. In order

to make it easy for Customer Service Representatives to set this priority the

number of options should probably be kept to a minimum. It might even be enough

to just have two priority levels: high and low. Given two priority levels and two

quality levels the total number of options to select would be four, but the number

of options could actually be reduced even more since no bad report could have a

high priority. It does not make sense to handle a certain type of bad reports before

95

any other bad reports. The total number of options would be three (good quality –

high priority, good quality – low priority, bad quality).20 Before the changes are

made in the administrative interface it is vital to have clear and precise guidelines

for the difference between high and low priority. Failing to set up these guidelines

or to implement them properly could severely damage the quality of the priority

flag.

One method that has started to look very promising lately is that of automatic

detection of specific abusive behavior. An example that has been discussed in this

report is to look for chain mails (see Section 3.3.3 on page 26). Other abuses could

also be found in the same way and the system could be built in a modular fashion

where detection modules for different types of abuses could be added. The result

from all these modules could later be shown in a separate view in the

administrative interface. The Customer Service Representatives would then have

to go through both the reports and the detections made by this system. The

possible win in such a system would be that some abuses could be detected even

before any report is filed and hopefully abusive users could be noticed and warned

before they have the opportunity to commit more abuses. At the same time the

potential problems with such system are limited. Falsely detecting an action which

is not an abuse would indeed cause some more work for the Customer Service but

following up on such a case is not likely to take long. Missing actions that should

have been flagged as an abuse is unfortunate but not very severe since there is still

a possibility that the abuse will be reported by a user the same way it is today. A

further benefit of such a system is that the different modules can work rather

independently. It is possibly to fail building a good chain mail detector but still

make a usable phishing detector. The largest downside of a system like this is that

it is very sensitive to lack of data. Practically none of the work outlined above

would have been possible to perform given the data that was given to this project.

The system would also need a large amount of data at run-time. In order to make

the most out of a system like this it would be necessary to feed it with all text

object (e.g., guestbook entries, blog post and private messages) produced by users.

8.4.3. Other Approaches

Automated methods are not the only way response times can be shortened. The

Customer Service has for a long time suggested that the interface used when filing

a report should be changed. They believe that less bad reports would be filed if it

was clearer to the users how a report should be filed and that filing illegitimate

reports is a rule violation. Extra steps should be added in the process and the user

will get to review their report and verify that they have actually selected the right

category and, most importantly, the right object. The Customer Service had a

similar request for a change in the process of handling messages about other issues

20 This is in fact the same number of options available today. Recall that there is currently
a quality level named “nonsense” which has become interchangeable with “bad”.

96

than abuses, such as payment problems. This change was made and the number of

messages received dropped to almost half. The change in quality is harder to

measure since this type of messages are not classified as good or bad, but

according to Customer Service Representatives the quality was raised most

notably. These two observations suggest that changes in a contact procedure can

help minimize the amount of bad content created, which makes this look like a

promising solution. One thing to keep in mind is that the number of messages not

concerning abuses fluctuates more than the number of reports about abuses. This

makes it hard to determine how much of the reduction of messages that was caused

by the change in the interface and how much of it was just a natural fluctuation.

Nonetheless the method looks promising and a decision has been made that a

change should be made to the interface for filing abuse reports, but it is not

decided when it should be implemented. It is likely that such a change will affect

the users' behavior and it is therefore recommended that any future work regarding

automatic processing of the abuse reports are postponed until this change has been

made and evaluated. Except for the possible change in behavior this change might

also affect how valuable certain automatic methods are. If the number of bad

reports is severely reduced, as suggested, an automated filtering system would not

be as useful as it appears today. If, on the other hand, the new reporting interface

would be seemed as an obstacle by the users causing them not to file reports, an

automatic detection system would appear even more appealing.

97

9. References

[And81] Jonathan Anderson (1981). Analysing the Readability of English

and Non-English Texts in the Classroom with Lix. In: Paper

presented at the Annual Meeting of the Australian Reading

Association (Darwin, Australia, August 1981). Available at <http://

www.eric.ed.gov/ERICWebPortal/custom/portlets/recordDetails/

detailmini.jsp?_nfpb=true&_&ERICExtSearch_SearchValue_0=

ED207022&ERICExtSearch_SearchType_0=no&accno=

ED207022> (last accessed 2008-02-14).

[BA97] Stefanie Brüninghaus and Kevin D. Ashley (1997). Using Machine

Learning for Assigning Indices to Textual Cases. Available at

<http://citeseer.comp.nus.edu.sg/18045.html> (last accessed

2008-02-22).

[BA04] Kent Beck and Cynthia Andres (2004). Extreme Programming

Explained. 2 edition. Addison Wesley. ISBN 0321278658.

[BAS+98] Michael C. Burl, Lars Asker, Padhraic Smyth, Usama Fayyad,

Pietro Perona, Larry Crumpler and Jayne Aubele (1998). Leaning to

Recognize Volcanoes on Venus. In: Machine Learning. Vol 30.

Available at <http://citeseer.comp.nus.edu. sg/131412.html> (last

accessed 2008-02-22).

[Beb08] Bebo (2008). Contact Us [www]. Available at <http://www.bebo.

com/ContactUs.jsp> (last accessed 2008-02-14).

[Bre94] Leo Breiman (1994). Bagging Predictors. In: Machine Learning.

Vol 24. Available av <http://citeseer.ist.psu.edu/breiman96bagging.

html> (last accessed 2008-05-18).

[DH06] Ilan Dar-Nimrod and Steven J. Heine (2006). Exposure to Scientific

Theories Affects Women’s Math Performance. In: Science. Vol 314.

Available at <http://www.ncsu.edu/awf/WomenMathStereotypes.

pdf> (last accessed 2008-02-14).

[Fac08a] Facebook (2008). Statistics [www]. Available at <http://www.

facebook.com/press/ info.php?statistics> (last accessed

2008-03-13).

98

[Fac08b] Faceparty (2008). Help + Support [www]. Available at <http://

www.faceparty.com/help/index.aspx> (last accessed 2008-02-14).

[FP97] Tom Fawcett and Foster J. Provost (1997). Adaptive Fraud

Detection. In: Data Mining and Knowledge Discovery. Vol 1 (3).

Available at <http://citeseer.ist.psu.edu/fawcett97adaptive.html>

(last accessed 2008-02-25).

[Fre07] Free Software Foundation (2007). GNU General Public License.

Available at <http://www.gnu.org/licenses/gpl.html> (last accessed

2008-06-04).

[Gra02] Paul Graham (2002). A Plan for Spam. In: Graham, Paul (2004).

Hackers & Painters: Big Ideas From The Computer Age. O'Reilly.

ISBN 0596006624. Available at <http://paulgraham.com/spam.

html> (last accessed 2008-02-14).

[GWF02] Frank R. Giordano, Maurice D. Weir, and William P. Fox (2002). A

First Course In Mathematical Modeling. 3 edition. Brooks Cole.

ISBN 0534384285.

[Kel07] Packy Kelley (2007). The 2007 AO 100 Top Companies [www].

Available at <http://alwayson.goingon.com/permalink/post/15899>

(last accessed 2008-02-14).

[LHK98] Mario Lenz, André Hübner and Mirjam Kunze (1998). Question

Answering with Textual CBR. In: Lecture Notes in Computer

Science. Vol 1495. Available at <http://citeseer.comp.nus.edu.sg/

147319.html> (last accessed 2008-02-22).

[LS95] Pat Langley and Herbert A. Simon (1995). Applications of Machine

Learning and Rule Induction. In: Communications of the ACM. Vol

38 (11). Available at <http://citeseer.ist.psu.edu/

langley95applications.html> (last accessed 2008-02-23).

[Oza06] Nikunj C. Oza (2006). Ensemble Data Mining Methods. In:

Encyclopedia of Data Warehousing and Mining. Available at

<http://ti.arc.nasa.gov/people/oza/publications/files/oza06.pdf> (last

accessed 2008-05-18).

[PNM+98] Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd

(1998). The PageRank Citation Ranking: Bringing Order to the

Web. Available at <http://citeseer.ist.psu.edu/page98pagerank.html>

(last accessed 2008-02-25).

[SKS05] Abraham Silberschatz, Henry F. Korth and S. Sudarshan (2005).

Database System Concepts. 5 edition. McGraw-Hill Higher

Education. ISBN 007124476X.

99

[Tan01] Andrew S. Tanenbaum (2001). Modern Operating Systems. 2

edition. Pearson Education. ISBN 0130926418.

[TKS06] Domonkos Tikk, Zsolt T. Kardkovács and Ferenc P. Szidarovszky

(2006). Voting with a Parameterized Veto Strategy: Solving the

KDD Cup 2006 Problem by means of a Classifier Committee.

Available at <http://www.sigkdd.org/explorations/issues/8-2-2006-

12/7-tikk-Winner-task2.pdf> (last accessed 2008-05-18).

[Web07] Webware staff (2007). Webware 100 Award Winner [www].

Available at <http://www.webware.com/8301-13546_109-9729504-

29.html> (last accessed 2008-02-14).

[WF05] Ian H. Witten and Eibe Frank (2005). Data Mining: Practical

Machine Learning Tools and Techniques. 2 edition. Morgan

Kaufmann. ISBN 0120884070.

[Wik07] Wikipedia contributors (2007). List of social networking websites

[www]. Wikipedia, The Free Encyclopedia. Version 155012280.

Available at <http://en.wikipedia.org/w/index.php?title=List_of_

social_networking_websites&oldid=155012280> (last accessed

2008-02-14).

[Uni98] United States Code (1998). Children's Online Privacy Protection

Act of 1998, 15 U.S.C §6501, et seq. Available at <http://www.ftc.

gov/ogc/coppa1.htm> (last accessed 2008-02-14).

[Xan08] Xanga (2008). Xanga Help [www]. Available at <http://help.xanga.

com/policeofficer.htm> (last accessed 2008-02-14).

100

Appendix A: StarClassifier

StarClassifier is a light-weight software tool that can perform classifications on a

set of examples in a database and write the result back to the database in question.

The classifications made are based on a decision tree that needs to be presented in

textual form to the tool. StarClassifier is built in Java and has no dependencies in

itself, but in order for it to function properly the appropriate database driver must

be available. The tool is not specific to Stardoll and can be used for all tasks where

examples need to be classified according to a decision tree.

The result that StarClassifier writes back to the database is not the estimated

class, but rather the probability of the example belonging to a pre-specified class.

In the case of determining if an abuse report is good or bad it is for example

possible to configure the system to output the probability of the report being good.

The results, which will range from 0 to 1, can then be used in order to take

appropriate actions.

Downloading and Compiling

StarClassifier is released under the GNU General Public License (GPL) and can be

downloaded without charge.21 The tool can either be downloaded in the form of an

already compiled JAR file or as a ZIP file containing all the source files. In the

first case the tool is ready to be used directly, but in the latter case the user has to

first compile the files and create a JAR file. One simplest method for doing so is to

utilize the build file distributed together with the source. This option requires that

the build tool Apache Ant22 is installed on the system. If it is, StarClassifier can be

built and bundled together as a JAR file by using the target “jar” as seen in the

following example. The JAR file, named StarClassifier.jar, will be

available in the folder “jar” after the execution has finished.

unzip StarClassifier-src.zip

ant jar

21 The needed files are available at <http://starclassifier.udd.be/>.
22 Found at <http://ant.apache.org/>.

101

Decision Tree File

One of the inputs needed by StarClassifier is a decision tree in Weka's plain text

format. One easy way to produce such tree is to run Weka Explorer and copy the

tree in question from the result buffer. Please note that the format used here is not

the same as Weka's binary format for saving models. The reason that the plain text

format is used is that it is easier for humans to read and, if necessary, manually

tweak.

In order to see how the tree file can look like and how to produce it the decision

tree classifying pizzas presented in Section 2.4.1 on page 13 will be revisited.

What was not discussed in that section was how input data used to create the tree

could look like, but for completeness of this guide this will be touched upon now.

Let us assume that the input data looks like the one in Table 26. One might notice

that this data do not completely follow the rules specified in the tree previously. It

can for example be seen that one pizza is tasty even though it is not warm. The

reasons for these deviations are twofold. First, real data are seldom perfect and

noise is likely to occur. Second, StarClassifier's ability to output a probability

instead of a class is best seen if the data can not be perfectly classified. If the only

outputs would be 0 (i.e., 0%) and 1 (i.e., 100%) the program would not be too

different from one that just outputted the class, which in this case would be

“TASTY” or “NOT TASTY”.

The data presented in the table should be opened in Weka Explorer. Once it has

been loaded the id attribute should be removed in order to prevent Weka from

finding coincidental patterns. It is for example possible to split the data on this

attribute and say that pizzas with an id value larger than 10 is tasty and all other

are not tasty. This would in fact only classify one instance incorrectly and

therefore look promising to an algorithm, but a human would quickly see that this

pattern is of no value since the id attribute is only available as a help to keep track

of the example, they do not tell us anything about the examples in themselves.

Once the id attribute has been removed the J48 tree can be created. The result

buffer will contain much information, including the actual tree. This tree is what

StarClassifier needs so it has to be saved in a separate file, which in the following

will be assumed to be named pizza.tree. The content of this file should be like

the following.

curry = YES: NOT TASTY (3.0)

curry = NO

| warm = NO: NOT TASTY (4.0/1.0)

| warm = YES: TASTY (13.0/3.0)

The plain text format should be fairly straight forward to read and understand.

It can be compared to the tree in Figure 2 on page 14. The major difference

102

between this format and the graphical format used earlier is that the text format

contains some information about how good the rules classified the training data.

The first number within the parentheses, or the only one if there is only one

number present between them, tells how many examples that applies to that rule. It

is for example four pizzas that neither have curry nor are warm. If a second

number is present within the parentheses it shows how many examples that are

incorrectly classified. One pizza in the training data, the one with id number 7, was

cold but still tasty. This caused one incorrectly classified example; hence the

second argument is 1 for the leaf in question.

Table 26: Example data for the pizza example.

id curry warm class

1 YES NO NOT TASTY

2 YES YES NOT TASTY

3 YES YES NOT TASTY

4 NO NO NOT TASTY

5 NO NO NOT TASTY

6 NO NO NOT TASTY

7 NO NO TASTY

8 NO YES NOT TASTY

9 NO YES NOT TASTY

10 NO YES NOT TASTY

11 NO YES TASTY

12 NO YES TASTY

13 NO YES TASTY

14 NO YES TASTY

15 NO YES TASTY

16 NO YES TASTY

17 NO YES TASTY

18 NO YES TASTY

19 NO YES TASTY

20 NO YES TASTY

Configuration File

Before StarClassifier can be run it has to have, in addition to a decision tree as

described in the previous section, a configuration file describing how database

interaction will work. This file mainly specifies how examples are fetched from

103

the database and how the result is written back, but since some other information

is needed to facilitate the database interaction the file has in the end five attributes.

These attributes all start with an at sign (@) and all lines that do not start with such

a sign, including empty lines, are ignored. They can for example be used as

comments. The five attributes will be described in turn below.

@driver. The database driver that should be loaded. For MySQL this would

normally be com.mysql.jdbc.Driver. Also note that this driver must be made

available to StarClassifier by including the appropriate entry in the classpath

variable.

@url. The JDBC URL that is used to connect to the database. This would

normally include the host on which the database server is running, the database

name, the user name and finally the password for that user.

@id. Examples need to be identified in some way and StarClassifier assumes

this is done by using a unique id attribute. This is the attribute used to link together

example loaded with attributes saved. The name of this attribute, which does not

have to be id, is configured with this option.

@load_sql. This option specifies the SQL statement that should be used when

loading examples. The attributes that should be fetched should be whatever

arguments that are needed in the tree and the id attribute specified above. It is valid

to select all attributes (i.e., SELECT * FROM SomeData) since unused arguments

do not interfere with the process in any way, but since all loaded data is read into

memory this can take up unnecessary amounts of space. It is possible to include a

WHERE clause and use that to limit the number of examples that are read.

@save_sql. Once the result has been calculated it has to be saved in the

database and this attribute specifies the SQL statement to use for that. This

statement should contain two question marks (?) which will be replaced with data

before the statement is run. The first question mark will be replaced by the

probability and the second with the id argument.

Exactly how the configuration file will look depends on the specific needs, but

one example is listed below. This file will in the following be referred to as

pizza.conf. It is assumed that the database is named CLASSIFICATIONS,

available on the machine sam and that it can be accessed with user name spade

and password trace. The database system has been assumed to be MySQL and

the standard JDBC Driver23 is used. The id attribute's name is “id” and the other

attributes are named as they have been named previously (i.e., “curry” and

“warm”). The same table, UnclassifiedPizzas, is used to both load data from

and save data to. The new attribute “probability” has been added to the table and

this is where the result is to be written.

23 Found at <http://dev.mysql.com/downloads/connector/j/>.

104

@driver com.mysql.jdbc.Driver

@url jdbc:mysql://sam/CLASSIFICATIONS?

user=spade&password=trace

@id id

@load_sql SELECT id, curry, warm FROM UnclassifiedPizzas;

@save_sql UPDATE UnclassifiedPizzas SET probability = ? WHERE

id = ?;

In some cases it might not be appropriate to use the same table for both these

purposes and then a new table can be created and INSERT statements can be used

to save the result. Assume for example that a new table named

PizzaClassifications should be used. This table should have one id attribute

linking pizzas in one table together with pizzas in the other table and one

probability attribute that will hold the actual result. In this scenario the @save_sql

option from above should be changed to the following.

@save_sql INSERT INTO PizzaClassifications(probability, id)

VALUES(?,?);

The probability attribute will be updated with a value between 0 and 1 which

means that this attribute should be able to handle floating point numbers. If this is

inappropriate for one or another reason an IF statement can be used to assigned a

class at this point. This means that the uncertainty setting has to be decided on

before classification can be made and the result has to be incorporated in the

configuration file. For simplicity it has been assumed that classification errors are

equally severe both ways meaning that the split value used is 0.5. The following

option assign to the attribute class either the string URK or the string YUMMY.

@save_sql INSERT INTO PizzaClassifications2(class, id)

VALUES(IF(? < 0.5, "URK", "YUMMY"), ?);

Running

StarClassifier needs three arguments to run. The decision tree and the

configuration file, which are the major components, have already been discussed.

The remaining argument is a specification of the class the probability should be

calculated from. In the case of Stardoll's abuse reports the focus has been on how

probable it is that a report is good, but there is nothing saying that it would be

incorrect to instead calculate the probability that a report is bad. These two values

always sum to one so given one of them it is easy to find the other, but it is

important to know which has been given.

The first argument that should be given to StarClassifier is the path to the

decision tree, the second is the name of the class to base the calculations on and

the third is the configuration file. There is one additional thing that needs to be

105

kept in mind and that is to make the needed database driver, as specified in the

configuration file, accessible. One of several ways of doing so is to include the

driver and StarClassifier in the classpath and to call StarClassifier with its fully

qualified name as seen in the example below.24 The driver has in the example been

assumed to be named mysql-connector-java-5.1.5-bin.jar and located in

the same folder as StarClassifier.jar. The default class has been assumed to

be “TASTY” meaning that the higher the output is the more likely the pizza is to

be tasty.25

java -cp StarClassifier.jar:mysql-connector-java-5.1.5-

bin.jar be.udd.starclassifier.StarClassifier pizza.tree

TASTY pizza.conf

StarClassifier will read all the examples described by the configuration file into

memory at the beginning of execution. Depending on the size of the dataset this

might make the default amount of memory available in the Java Virtual Machine

(JVM) too little. If this is the case the maximum amount of memory can be

changed with the Xmx option. The following example shows how to allow

StarClassifier to allocate up to 256 Mb of memory.

java -Xmx256m -cp StarClassifier.jar:mysql-connector-

java-5.1.5-bin.jar be.udd.starclassifier.StarClassifier

pizza.tree TASTY pizza.conf

If the memory can not be increased enough it is possible to split up the

computations in different runs. Multiple configuration files can be listed after each

other and they will then be processed one after another. In order for this to work it

is necessary that the two configuration files describe different sets of data in the

@load_sql option. It is for example possible to use the id attribute for this and let

all examples with an id less than some value be processed in one configuration file

and let all other examples be processed in another configuration file.

One possibility to avoid looking at the id attribute to find a suitable split point

is to utilize the ISNULL condition. Assume that the attribute that should be

updated, “probability”, is NULL for all examples in the beginning and that this

attribute is updated with the probability once the example in question has been

processed. This means that all unprocessed examples have the probability attribute

set to NULL. The following two lines from a configuration file will select (up to)

10000 unclassified examples and classify them. The number of examples to select

should match how many examples that can be processed given the memory

limitations in question. In this case the same configuration file can be listed on the

24 Note that the -jar java option means that other classpath options are ignored.
25 If it would have been chosen to be “NOT TASTY” this argument would have been

needed to be quoted to avoid it from being treated as two separate arguments.

106

command line multiple times to cover all instances. If the database contains 35000

unclassified example the configuration file should be listed four times.

@load_sql SELECT id, curry, warm FROM Pizzas WHERE

ISNULL(probability) LIMIT 10000;

@save_sql UPDATE Pizzas SET probability = ? WHERE id = ?;

The above example has solved some of the problems but it is still cumbersome

since it requires knowledge about how many unclassified examples are available.

To solve even this problem and make it more practical for batch runs the exit code

of the program can be investigated. If the program has been executed without any

errors occurring but without processing any examples, meaning that the load SQL

statement did not select any rows, the exit code will be 100. During normal

execution it will be 0. These pieces of information can be put together and a

simple script can be written to make the program loop as long as the exit code is

0.26 If such a looping script will be used it is vital that the configuration file is

written so that the SQL statement for loading the examples at some point will

return an empty result, otherwise execution will continue indefinitely.

Pre- and Post-processing

It should be noted that StarClassifier only does the actual classification and that

additional processing is likely to be needed both before it can be run and after it

has finished. The processing done before should calculate all needed attributes and

make them readily available. In the pizza example it is possible that the original

database does not have an attribute “curry”, but instead have a list of ingredients.

In such case the preprocessing phase should include going through all ingredients

looking for curry and write the result to this new attribute. Preprocessing can be

very tedious and time-consuming, but it is likely the tasks needed can be written

together in the form of a script. If that is the case the preprocessing script can

simply be run before StarClassifier. The output might perhaps not need much more

processing but it has to be interpreted in some way. In most cases the result should

not just be stored in a database table but rather used as a base for some decision. In

Stardoll's case the outputted value should changed whether an abuse report should

be kept or if it should be removed. There are different ways to handle this. One

possibility is to use different tables for reports that are estimated to be good and

26 In the shell Bash the exit code of the previously executed program is $?. An outline to a
looping script written for such environment could look like the following.
exit_code=0

while [$exit_code -eq 0]

do

 [code to execute]

 exit_code=$?

done

107

for reports that are estimated to be bad, and then only handle the reports in the first

table. In this case some additional processing is needed after StarClassifier has

finished running. Another possibility is to just assign the values to the report and

change the other systems to take this into account. The administrative interface

showing reports could be changed to only show reports which have a higher value

than some threshold. In this case no additional post-processing script needs to be

run.

In the general case there are three phases needed. First, the preprocessing phase

where the attributes are collected. Second, the actual classification phase during

which StarClassifier produces the output. Third, the post-processing phase where

the result is handled in some way.

Limitations

StarClassifier is built with just one task in mind and that is to use a J48 decision

tree to classify examples in a database. When it comes to this particular task the

tool should be fairly comprehensive. StarClassifier can handle numeric as well as

categorical attribute values, and also NULL values which are interpreted as

missing values. Large amounts of data, different database systems and table layout

should not present any problem to the tool either. When it on the other hand comes

to tasks outside the original scope the tool has some limitations. It is for example

not possible to use other classifications algorithms than J48.

One limitation that should be noted is that StarClassifier only can handle two

classes and it will output incorrect results if the decision tree has more than two

classes. The reason for this limitation is that Weka's plain text format for decision

trees does not include enough information to do a correct classification when more

than two classes are present.

It would be possible to build a tool that would be more widely applicable by

incorporating classes from Weka. By using Weka's binary format, instead of the

plain text format, it would be possible to handle more than two classes. By taking

this even further it would be possible to borrow the entire load module for

classifiers from Weka which would make it possible to use this tool even for other

types of classifiers, such as rule based classifiers. The downside of all this is that

increased flexibility and scope comes with a cost. Using a binary decision tree

format makes the trees less readable and harder to modify, incorporating classes

from Weka increases dependency and so on. It has been a goal during development

to make a tool that solves the problem while being simple and standalone.

108

Appendix B: Effects of Individual
Attributes

It is interesting to look at attributes in isolation to see what effect one attribute has.

One of the attributes that the Customer Service pointed out as being important was

if a user has invested money into their account. It turned out that reports against

paying users are good in 38% of all cases, which indicates that this might not be as

important as believed. Recall that the average among all reports was 39%. If only

the most spending half of the paying users are considered this number is down at

37%, which indicates a trend but perhaps not as useful as many might have

believed. It is worth noting that this correlation is also seen when turning the focus

to the person filing the report. Reports filed by paying users are good in 41% of the

cases. A third attribute that was brought up by the Customer Service was if the

user who was reported had the kidlock activate. This did indeed turn out to be

relevant since only 21% of reports filed against kidlocked users are good. It is,

however, necessary to also say that reports like this are quite rare since only about

1% of all reports are filed against users with this lock in place. The last attribute

mentioned by the Customer Service as one that could possibly be of extra

importance is if the reported person has recently been cover girl. The assumption

is that other users, who think that they are more worthy the title, is jealous and

report the actual cover girl on false ground. When looking into the matter it turns

out that this assumption does not hold. Among the reports written against users

who have been cover girl during the last week, 42% are good. This indicates that a

larger, rather than smaller, portion of reports filed against recent cover girls are

good, but this conclusion should be taken with a grain of salt since the number of

reports filed against this group of users is very small (only 220 in the entire

training data).

Analyzing the description text written in the report was believed to be risky

since the field was used in different ways by different users, but some correlation

between how this field was filled in and the report quality can be seen. Reports

which have a description that contains both uppercase and lowercase letter, which

can be seen as a rudimentary quality measure of a text, are good in 41% of the

cases, while reports that do not meet this criterion are good in 38% of the cases.

The average Lix value, considering only reports that have a description present, is

21. Reports that have a Lix value higher than average are good in 41% of the

109

cases, while the same number is 37% for Lix values below average. Reports that

contains both uppercase and lowercase letter and have a Lix value above average

are god in 42% of all cases. This indicates that well-written descriptions are an

indicator for a good report. The length on the other hand does not appear to have

any effect. The average length of a comment is 54 characters, but the proportion of

good reports is the same for reports with descriptions both shorter and longer than

this.

Reports can easily be grouped by either the type of the reported object, e.g.

blog post or guestbook entry, or the category, e.g. threats or asks for password. It

might be interesting to look at the statistics within these two groups. The type of

the reported object appears to have significant effect on the result. Reports filed

concerning blog posts are good in 54% of all cases, while reports concerning

friend lists27 are only good in 15% of all cases. It is worth noting that these two

object types are both quite rare and only present in about 2% of the reports each. It

should also be noted that these differences are present, albeit not as clear, even if

focus is turned towards the more common types of objects. Reports concerning

profile page presentations, the most common object among reports, are good in

33% of all cases, while reports concerning guestbook entries, the second most

common object, are good in 47% of all cases. The type of object that has been

reported appears to have significance, and so does the category the report was filed

in. Reports concerning bad language are good in 41% of all cases, while reports

concerning threats only are good in 32% of all cases.

It has been shown above that quality differences can be found by focusing at

the attributes the Customer Service though were important and also by considering

the natural grouping of reports. These quality differences can also be seen by

looking at the other attributes, but these are too many to go through one by one so

focus will be on the most important ones. In general a few strong, and perhaps

anticipated, connections can be seen.

The reporting user's activity. A report's quality tends to improve if the

reporting user is an active user. One possible reason for this is that active users

have experience of what the site should look like and have learned to know what

sort of behavior is accepted. How long the user has been a member, the number of

logins and the number of products a user has bought all seem to have importance.

Reports written by users who have sent at least one broadcast message28 are good

in 42% of all cases, while the same number is 37% for users who have not engaged

in this activity.

27 It might appear strange that friend lists can even be reported, but there is a reason. A
user can promote some of its friends as best friends, which means that these friends will
be listed on the user's profile page. Together with the name of the friend and a picture of
their doll, a short comment can be written. This comment might be offensive and is
therefore reportable.

28 User have the possibility to write messages, called broadcast messages, that are shown
to all logged in users for a few seconds.

110

The reported user's history. A user who has violated the rules earlier appears

to be likely to do so again. Reports written against users who have gotten a

warning in the past are good in 48% of all cases. If final warnings are considered

instead this number is up at 53%.

The general reporting history. The amount of previously filed reports against

the reported user and the amount of previously filed reports by the reporting user

seems to affect. The quality of a report against a reported user seems to lie in line

with the quality of previously reports against that user. Reports filed against users

who have been correctly reported before are good in 52% of all cases. This number

is up at 57% if the other report was filed within the last month. This pattern also

holds when looking at it from the other side, i.e. the quality of reports filed against

users which have been incorrectly reported earlier are lower than the average. It is

possible to ignore the quality of the previously filed reports and only look at the

number of them. The more reports that are filed against a user and the more recent

they are, the better are the reports that are filed against that user. When it comes to

the reporting user, the more reports that have been filed, the better they were and

the more recent they were filed, the more likely the user is to write a good report.

User writing their first report writes good reports in 35% of the cases, while users

who have written more than 12 reports write good reports in 44% of all cases.

Users who have some time in the past written a good report write good reports in

45% of all cases.

It is worth pointing out that the reporting user's activity is listed as an

influential factor above while the reported user's activity is not mentioned. The

case is that both seem to be of importance but the former seem to matter much

more. It is for example not possible to notice any mentionable difference between

reports filed against users who have sent a broadcast message and users who have

not, while a fairly large difference could be seen on this point when focusing on

the user writing the report. On some other aspects, there is a difference in both

cases, but not as large. It is for example possible to look at the number of products

bought by the users. The median value for the number of products a user has when

they file a report or when a report is filed against them is 20, so the split point

between few products and many products will be there. When considering a user

as a reporter the difference between few and many products is fairly large. A user

who has few products will write good reports in 36% of all cases while a user with

many products will write good reports in 41% of all cases. If focus instead is

turned against the reported user this difference will be much smaller. Reports filed

against users with few products are good in 39% of all cases while reports filed

against users with many products are good in 37% of all cases.

It might also be worth pointing out the trends when it comes to user activity.

When looking at a report the reported user's activity has a negative influence on

the quality of a report while the reporting user's activity has a positive influence.

111

One interpretation of this is that active users have been around long enough for

learning how the site works and how one should behave to comply with the rules.

They are also, thanks to their experience, good at spotting unaccepted behavior

and they write good reports about it. Another reason why experienced users

appears to follow rules better than less experienced users is that users who do not

intend to follow the rules are deleted from the site as soon as this is noticed. In the

same way users who were behaving in an unacceptable manner have been

contacted by the Customer Service and asked to improve their behavior.

Please note that these numbers might be misleading. For this work the

interesting aspect is the proportion between good and bad reports, not so much the

number of reports in itself. In most other situations the latter is of great

importance. In the text above it has been stated that the proportion between good

and bad reports written against paying and non-paying users is almost the same.

This is true, but it is not true to based on this state that paying users and non-

paying users are sharing a similar behavior. It might be the case that very few

reports are filed against either category of users in the first place. It is possible that

a group of users are behaving in such a way that no other users file reports against

them, but once they do the reports are having the same quality as the average

report.

112

	1. Introduction
	1.1. Objective
	1.2. Study Performed
	1.3. Method
	1.4. Limitations
	1.5. Target Group
	1.6. Outline of Report

	2. Background
	2.1. Automated Methods
	2.2. Related Work
	2.3. Case Studies
	2.4. Machine Learning
	2.4.1. Decision Trees

	3. Stardoll
	3.1. General Information
	3.2. Abuse Reports at Stardoll
	3.2.1. Handling of Abuse Reports
	3.2.2. Overview of an Abuse Report
	3.2.3. Example of Abuse Reports

	3.3. Possible Uses of Automated Methods
	3.3.1. Ordering Reports by Priority
	3.3.2. Profiling Users
	3.3.3. Finding Specific Behavior
	3.3.4. Filtering out Reports

	3.4. Potential Benefits and Moral Implications

	4. Preprocessing the Data
	4.1. Theoretical Aspects
	4.1.1. Preparation
	4.1.2. Collecting Attributes
	4.1.3. Recovery of Data

	4.2. Preparation
	4.3. Attributes in the Report
	4.4. Attributes Suggested by the Customer Service
	4.5. Attributes Used
	4.6. Recovery of Data
	4.7. Lack of Data

	5. Training the Classifier
	5.1. Theoretical Aspects
	5.1.1. Large Data Volumes
	5.1.2. Ensemble Methods

	5.2. Weka
	5.3. Choosing Classification Algorithm
	5.4. Choosing Parameters
	5.5. Finding the Most Suitable Subset
	5.6. Favoring Memory Instead of Time
	5.7. Increasing Memory
	5.8. Creating a Tree Based on Fewer Attributes
	5.9. Bagging and Boosting
	5.10. Building a Custom Ensemble System
	5.11. Ensemble with Veto
	5.12. Description of the Classifier

	6. Using the Classifier
	6.1. Theoretical Aspects
	6.2. StarClassifier
	6.3. Handling of Rejected Reports
	6.4. Protected Reports

	7. Evaluating the Classifier
	7.1. Evaluation on New Data
	7.2. External Factors Affecting the Result
	7.3. Interviews
	7.3.1. Customer Service
	7.3.2. Management
	7.3.3. Development

	8. Result and Analysis
	8.1. Conclusions
	8.2. Contributions
	8.3. Lessons Learned
	8.4. Future Research
	8.4.1. Improved Automatic Filtering
	8.4.2. Other Automated Methods
	8.4.3. Other Approaches

	9. References

